Über Veresterungsgeschwindigkeiten mit äthylalkoholischer, äthylenglykolischer und glyzerinischer Salzsäure

Vor

Anton Kailan und Adolf Ostermann

Aus dem I. Chemischen Laboratorium der Universität in Wien
(Vorgelegt in der Sitzung am 16. Jänner 1930)

A. Versuchsanordnung 1.

Nachstehend werden Messungen der Geschwindigkeit der durch Salzsäure katalysierten Veresterungen der Hydrozimtsäure in Glyzerin und Glykol, der *n*-Buttersäure, der Isobuttersäure, der 2, 4- und; 3, 5-Dinitrobenzoesäuren in Glyzerin, der letzteren auch in Äthylalkohol, in ursprünglich absoluten Medien und in solchen, die zu Versuchsbeginn 2/3 und 4/3 Mole Wasser enthielten, sowie ein Versuch über die Veresterung von *n*-Valeriansäure mit glyzerinischer Salzsäure mitgeteilt.

Über die Veresterungsgeschwindigkeiten der genannten Säuren mit Salzsäure als Katalysator liegen Angaben im Schrifttum vor, u. zw. über die der Hydrozimtsäure in Äthylalkohol² von A. Kailan, der n-Buttersäure in Methylalkohol³ und in Äthylalkohol⁴ von H. Goldschmidt, in Glyzerin von A. Kailan und R. Obogi⁵ und über die Veresterungsgeschwindigkeiten der Dinitrobenzoesäuren in Äthylalkohol⁶ von A. Kailan.

Die erwähnten Säuren waren — mit Ausnahme der 2, 4-Dinitrobenzoesäure, welche selbst hergestellt wurde — Kahlbaumsche Präparate. Bei der Überprüfung zeigten sie die im Schrifttum angegebenen Siedepunkte bzw. Schmelzpunkte. Die Titrationsanalysen ergaben befriedigende Übereinstimmung zwischen dem gefundenen und dem berechneten Laugenverbrauche.

Zur Überprüfung der Arbeitsmethode und zur Bestimmung des etwaigen Wassergehaltes der verwendeten Medien wurde im Versuch 1 bzw. 2 Benzoesäure in Glyzerin bzw. Äthylenglykol verestert. Die dort angegebenen k_b wurden nach der später mitgeteilten bzw. der von Kailan und Melkus⁷ angegebenen

Die Versuche mit 3,5-Dinitrobenzoesäure in Äthylalkohol wurden von A. Kailan, alle übrigen von A. Ostermann ausgeführt.
 Monatsh. Chem. 28, 1907, S. 1137, bzw. Sitzb. Ak. Wiss. Wien (II b) 116, 1907, S. 1043.
 Z. physikal. Chem. 80, 1913, S. 30.
 Z. physikal. Chem. 60, 1907, S. 728.
 Rec. trav. chim. 43, 1924, S. 512.
 Monatsh. Chem. 28, 1907, S. 571, bzw. Sitzb. Ak. Wiss. Wien (II b) 116, 1907.
 A71.
 Monatsh. Chem. 48, 1927, S. 9, bzw. Sitzb. Ak. Wiss. Wien (II b) 136, 1927, S. 9.

Formel berechnet. Sie stimmen in beiden Fällen gut mit den gefundenen Werten überein.

Das wasserfreie Glyzerin wurde durch dreimalige Destillation des käuflichen "chemisch reinen" Glyzerins im Vakuum erhalten. Es wurde für die Versuche nur die bei 12 mm Druck bei 175° übergegangene Mittelfraktion benützt. Das verwendete Glykol war das von Adolfine Schachner⁸ benutzte Präparat.

Die Dichte des verwendeten Glyzerins betrug $d_{4^0}^{25^0}=1.2580$, die des Glykols $d_{4^0}^{25^0}=1.11005$.

Als Dichten $\hat{d}_{4^0}^{25^0}$ der glyzerinischen bzw. glykolischen Reaktionsgemische wurden folgende Werte benützt⁹:

		Lösung in	Glyzerin.		
c	1/24	1/12	1/6	1/3	2/3
w = 0	$1 \cdot 259$	$1 \cdot 259$	1.260	$1 \cdot 262$	$1 \cdot 264$
w=2/3	$1 \cdot 257$	1.257	1.258	1.260	1.262
w = 4/3	1.254	1.254	1.255	1.257	1 · 259
		Lösung i	n Glykol.		
w = 0	1.114	1.116	1.118	1 · 120	$1 \cdot 124$
w = 2/3	1.113	1.115	1.117	1.119	1 · 123
w = 4/3	1.112	1.114	1.116	1.118	1.122

In Glykol stimmen die Konstanten der Veresterungsgeschwindigkeit der Hydrozimtsäure mit denen der gesättigten aliphatischen Fettsäuren nahezu vollständig überein, in Glyzerin schienen sie zunächst höher als die der letzteren zu sein.

Indessen wurden bei der Veresterung der Isobuttersäure in Glyzerin Werte erhalten, die mit den von R. Obogi¹⁰ für n-Buttersäure und von H. Raupenstrauch¹¹ für diese und die übrigen gesättigten normalen Fettsäuren gefundenen nahezu gleich waren, während doch hier niedrigere Zahlen zu erwarten gewesen wären.

Deshalb wurde die Veresterungsgeschwindigkeit der n-Buttersäure nochmals gemessen und tatsächlich praktisch gleich der der Hydrozimtsäure gefunden. Die gleiche Konstante ergab sich auch für die n-Valeriansäure bei einem mit letzterer ausgeführten Orientierungsversuche.

Somit kann wohl angenommen werden, daß dies auch für die übrigen gesättigten normalen Fettsäuren gilt.

Die Bereitung der äthylalkoholischen, glyzerinischen bzw. äthylenglykolischen Salzsäure war die gleiche wie in früheren Arbeiten von A. Kailan und seinen Mitarbeitern.

Bei den sehr rasch veresternden Säuren wurde, um auch hier noch den Zeitfehler vernachlässigen zu können, wie folgt

 $^{^8}$ Monatsh. Chem. 52, 1929, S. 23, bzw. Sitzb. Ak. Wiss. Wien (II b) 138, 1929, S. 191. Die Dichten von c=1/6 bis 2/3 n wurden der Arbeit von A. Kailan und E. Krakauer entnommen. Monatsh. Chem. 49, 1928, S. 347, bzw. Sitzb. Ak. Wiss. Wien (II b) 137, 1923, S. 347. 10 Rec. trav. chim. 43, 1924, S. 512. 11 Monatsh. Chem. 45, 1924, S. 485, bzw. Sitzb. Ak. Wiss. Wien (II b) 133, 1924, S. 485.

verfahren: In ein ca. 4 cm breites und 12 cm hohes zylindrisches Glasgefäß mit gut passendem, plangeschliffenem Glasstöpsel wurden die zu veresternde organische Säure und entsprechende Mengen Glyzerin bzw. Glykol eingewogen und das Gefäß in den Thermostaten gehängt; sodann wurde in ein kleines Gläschen die glyzerinische bzw. glykolische Salzsäure eingewogen und in das im Thermostaten befindliche zylindrische Glasgefäß so hineingleiten gelassen, daß die beiden Lösungen nicht in Berührung kamen. Nach etwa 10 Minuten, nachdem beide Lösungen die Temperatur des Thermostaten angenommen hatten, wurde das Reaktionsgefäß kräftig geschüttelt. In 3-4 Minuten war die Lösung homogen. Die Zeit wurde vom Beginn des Schüttelns bis zum Eintragen der betreffenden Probe in Wasser gerechnet.

Die Versuchsanordnung bei langsam verlaufenden Veresterungen war die gleiche wie in früheren Arbeiten von A. Kailan und seinen Mitarbeitern.

Titriert wurde mit Barytlauge, bei der 3,5-Dinitrobenzoesäure auch mit alkoholischer Natronlauge und Phenolphthalein als Indikator.

Die Versuchstemperatur war 25° C.

Da die Versuche mit den rasch veresternden Säuren im Sommer ausgeführt wurden, wo die Temperatur des Arbeitsraumes auch etwa 25° betrug, wurden die rand 3 Minuten, die vom Zeitpunkte der Entnahme der Probe aus dem Reaktionsgefäße bis zum Ausgießen der gewogenen Lösung in den mit destilliertem Wasser versehenen Titrierkolben — das ist also bis zur praktischen Beendigung der Reaktion — vergingen, voll berücksichtigt.

In den folgenden Tabellen ist t die, wie oben angegeben, bestimmte Reaktionszeit in Stunden, a, c, w sind die Anfangskonzentrationen der organischen Säure, der Salzsäure und des Wassers in Molen pro Liter; A und C ist der für Versuchsbeginn berechnete Verbrauch an Lauge für die organische Säure bzw. Salzsäure, die in 10~g Einwaage (E) des Reaktionsgemisches enthalten waren. A-X ist der Verbrauch für die erstere zur Zeit t. Der Briggsche Logarithmus des Titers der Lauge wird unter T angegeben.

Die Konstanten k sind nach der Formel für monomolekulare Reaktionen und Briggsche Logarithmen berechnet; k_m ist der Mittelwert der k, berechnet unter Berücksichtigung des Gewichtes $p=t^2~(A-X)^2$ jeder Einzelbestimmung, unter k_b sind die nach den später mitzuteilenden Formeln errechneten Konstanten angeführt. Die Fehler der letzteren in Prozenten der gefundenen Konstanten finden sich unter f%, das Verhältnis dieser Fehler zu den zulässigen prozentischen der k-Werte unter v. Nimmt man die Zeitbestimmungen als praktisch fehlerfrei und die eben noch möglichen Titrationsfehler mit $0.2~cm^3$ an und berücksichtigt, daß letztere bei einem Umsatze von 63.2% den geringsten Einfluß auf die Konstanten haben, so wird der zulässige prozentische Fehler $\frac{54.37}{12}$.

Die w_m sind die auf die gleiche Weise wie die k_m berechneten Mittelwerte des während der Reaktion im Mittel vorhandenen Wassers.

¹² Monatsh. Chem. 27, 1906, S. 573, 574, bzw. Sitzb. Ak. Wiss. Wien (II b) 115, 1906, S. 372, 373.

R. Versuchsreihen.

I. Versuche mit Benzoesäure.

Von der von Kahlbaum bezogenen, aus Wasser umkristallisierten Benzoesäure verbrauchten $0.2150~g~40.71~cm^3$ einer 0.04330~n-Barytlauge (ber. 40.67) F. P. 121°.

(In Glyzeriu.)			(In Glykol.)			
Tabelle 1.			Tabelle 2.			
T = 0.6365 - 2			T = 0.6389 - 2			
A = 15	5.64	C = 30.61	A = 24.39	C =	= 34.02	
a = 0	a = 0.0853 $c = 0.1670$		a = 0.1188 $c = 0.1656$			
t	A-X	$k.10^{5}$	t	A - X	k . 105	
0.18	15.62		0.21	$24 \cdot 34$		
27.19	$10 \cdot 19$	684	20.88	16.35	831	
50.55	7.18	669	38.53	$11 \cdot 71$	827	
$84 \cdot 59$	4.65	623	41.38	11.24	813	
115.30	$3 \cdot 04$	617	51.84	9.57	784	
			61.93	7.88	793	
			87.74	5.11	774	
$10^5 k_m$	$=645 10^{1}$	$k_m/c = 386$	$10^5 k_m = 80$	05 10+ k _m /c	= 486	
$\iota \sigma_m$	= 0.026 fū	$\mathbf{r} w_0 \equiv 0$		035 für wo:		
	$10^4 k_b = 6^\circ$	75 ¹³	$k_b =$	= 778.10 -5		

II. n-Valeriansäure.

Die von Kahlbaum bezogene Säure zeigte übereinstimmend mit den Angaben im Schrifttum 14 den Siedepunkt 185° C bei 741~mm Druck: 0.4850~g verbrauchten $42.00~cm^{3}$ einer 0.1132~n-Barytlauge (ber. 41.96).

Tabelle 3.

Versuch in ursprünglich wasserfreiem Glyzerin; $w_{\mathrm{0}} \equiv 0.$

T = 0.0538 - 1A = 6.27 a = 0.0894C = 11.53 c = 0.1644t A-Xk· 0.454.320.3593.08 0.900.3431.17 2.500.341 2.08 1.28 0.332 $k_m = 0.341$ $k_m/c = 2.08$ $w_m = 0.026$

III. Normale Buttersäure.

 $0\cdot 4221~g$ der von Kahlbaum bezogenen Säure erforderten $42\cdot 35~cm^3$ 0·1132n-Barytlauge (ber. $42\cdot 36)$ Siedepunkt 163° bei 743mm Druck.

¹³ Nach der Rec. trav. chim. 41, 1922, S. 592, angegebenen Formel findet man den praktisch identischen Wert $10^4\,k_{b'}=665$. ¹⁴ Zander A., 224, S. 65.

1. Versuche in ursprünglich wasserfreiem Glyzerin; $w_{\rm o} \equiv 0$.

• 0			, ,			
Tabelle 4.				Tabelle 5.		
T =	= 0.0538 -	- 1		T = 0.0538 - 1		
A=5.93	C =	= 22 · 46	A =	7.15	C = 11.80 $c = 0.1684$	
a = 0.084			a =			
	1-X		t			
0.34			0.40	6 4.8	86 0.364	
0·75 1·10	1·88 1·12	0.658	0·83 1·11	3 3·6 1 2·9		
1 10	1.12	0 050		1 1.8		
$k_m = 0.65$	53 <i>k/</i>	c - 2·04			$k_m/c = 2.07$	
		p = 0.990			$k_b = 0.344$	
,	Tabelle 6.			Tabel	le 7.	
T =	- 0.0538 -	- 1		T = 0.63	365 - 2	
A = 6.30			A = 20	0.12	C = 7.69	
a=0.0898	c =	0.0849	a = 0	0.1096	c = 0.0419	
	1-X		t		$X \qquad \qquad k$	
0.55	5·01 3·60	0·181 0·177	1·51 3·08	14.7		
1·37 2·43		0.177	3·08 4·53	10.9	0 0·0865 7 0·0841	
		0.174	5.69		3 0.0825	
			8.06		0 0.0773	
			$26 \cdot 34$	0.10		
$k_m = 0.17$	$6 k_m/c$	= 2.07	$k_m = 0$	·6831	$k_m/c = 1.98$	
$w_m = 0.02$	6 k_b	= 0.175	$w_m = 0$	-033	$k_b = 0.0854$	
2. Versu	che in u	rsprünglic	h wasser!	haltigen	n Glyzerin.	
T	Cabelle 8.			Tabelle	e 9.	
T =	0.0538 —	1		T=0.68	365 — 2	
A = 7.12	C=2	3.23	A=1	17.72	C = 30 27	
a = 0.1016			a =		c = 0.1649	
	-X		t		$X \qquad \qquad k$	
0.17	5.10	0.395	0.59	13.3	59 0.195	
0·42 4 1·14 2	· 93 · 75	0.363	1·22 1·93	10 · 3	56 0·184 04 0·178	
2.04	· 28	0.365	2.43	6.5	58 0.177	
			2.86		0.176	
$k_m = 0.369$	k_m/c	= 1.111	$k_m =$	0.179	$k_m/c = 1.09$	
$w_m = 0.705$	wo	= 0.675	$w_m =$	0.681	$w_0 = 0.654$	
k_b	= 0.354			$k_b=0$	179	
Ta	belle 10.			Tabelle	11.	
<i>T</i>	0.0538 —	1	,	T = 0.0538	8 1	
A = 7.70	C=5	·81	A = 7		C = 2.93	
a = 0.1095	c = 0	.0827	a = 0	1064	c = 0.0416	

(Zu Tabelle 10.)	(Zu Tabelle 11.)
0 20 0 02	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$k_m = 0.0902$ $k_m/c = 1.09$ $w_m = 0.680$ $w_0 = 0.662$ $k_b = 0.0898$	$k_m = 0.0438$ $k_m/c = 1.05$ $w_m = 0.690$ $w_0 = 0.666$ $k_b = 0.0449$
Tabelle 12.	Tabelle 13.
T = 0.0538 - 1 A = 5.67 $C = 23.00a = 0.0807$ $c = 0.3272$	T = 0.0538 - 1 $A = 7.07$ $C = 11.65$ $a = 0.1005$ $c = 0.1655$
$\begin{array}{cccccccc} t & A - X & k \\ 0 \cdot 52 & 4 \cdot 12 & 0 \cdot 267 \\ 0 \cdot 83 & 3 \cdot 43 & 0 \cdot 263 \\ 1 \cdot 06 & 2 \cdot 98 & 0 \cdot 264 \\ 1 \cdot 70 & 2 \cdot 03 & 0 \cdot 263 \\ 2 \cdot 00 & 1 \cdot 75 & 0 \cdot 255 \end{array}$	$\begin{array}{ccccc} t & A - X & k \\ 0.78 & 5.57 & 0.133 \\ 1.50 & 4.44 & 0.135 \\ 2.76 & 3.09 & 0.130 \\ 3.73 & 2.56 & 0.129 \end{array}$
$k_m = 0.260$ $k_m/c = 0.794$ $w_m = 1.337$ $w_0 = 1.313$ $k_b = 0.260$	$k_{m} = 0.131 k_{m}/c = 0.790$ $w_{m} = 1.334 w_{0} = 1.307$ $k_{b} = 0.132$
Tabelle 14.	Tabelle 15.
T = 0.0538 - 1	T = 0.0538 - 1
A = 7.36 $C = 5.80a = 0.1045$ $c = 0.0823$	A = 6.61 $C = 2.89a = 0.0937$ $c = 0.0410$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} t & A-X & k \\ 1 \cdot 34 & 5 \cdot 96 & 0 \cdot 0336 \\ 5 \cdot 33 & 4 \cdot 12 & 0 \cdot 0329 \\ 10 \cdot 45 & 3 \cdot 00 & 0 \cdot 0328 \\ 14 \cdot 48 & 2 \cdot 26 & 0 \cdot 0322 \end{array} $ $ k_m = 0 \cdot 0326 & k_m/c = 0 \cdot 797 $
$k_m = 0.0651$ $k_m/c = 0.791$ $w_m = 1.346$ $w_0 = 1.316$ $k_b = 0.0652$	$w_{m} = 1.334 \qquad w_{0} = 1.308$ $k_{b} = 0.0326$

IV. Isobuttersäure.

Der Siedepunkt der von Kahlbaum bezogenen Säure war 156° C bei 743 mm Druck; 0·3111 g der Säure verbrauchten $38\cdot33$ cm^{3} 0·09219 n-Barytlauge (ber.: $38\cdot34$).

1. Versuche in ursprünglich absolutem Glyzerin. $w_{\rm o}=0.$

Tabelle 16. Tabelle 17.
$$T = 0.9647 - 2 \qquad T = 0.6389 - 2$$

$$A = 10.32 \qquad C = 28.89 \qquad A = 16.34 \qquad C = 55.39$$

$$a = 0.1201 \qquad c = 0.3362 \qquad a = 0.0898 \qquad c = 0.3044$$

(Zu Tabelle 16.)	(Zu Tabelle 17.)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} t & A - X & k \\ 0.66 & 7.34 & 0.52 \\ 0.98 & 5.08 & 0.51 \\ 1.43 & 3.15 & 0.50 \\ 1.82 & 2.09 & 0.49 \\ k_m = 0.511 & k_m/c = 1.66 \\ w_m = 0.032 & k_b = 0.5 \end{array}$	8 0 2 8	
Tabelle 18.	Tabelle 19.		
T = 0.9647 - 2	T = 0.6389 - 2		
A = 12.80 $C = 14.26a = 0.1487$ $c = 0.1659$	A = 15.96 $C = 30.57a = 0.0876$ $c = 0.167$	7	
$t \qquad A - X \qquad k$	$t \qquad A - X \qquad k$	•	
0.61 8.60 0.283	0.59 10.69 0.29	5	
0.98 6.82 0.279	0.92 8.68 0.28	_	
1.60 4.77 0.268	1.42 6.47 0.28		
	1.65 5.72 0.27		
	3.00 2.62 0.26	2	
$k_m = 0.275 \qquad k_m/c = 1.66$	$k_m = 0.279 \qquad k_m/c = 1.66$	6	
$w_m = 0.038 \qquad k_b = 0.273$	$w_m = 0.025 \qquad \qquad k_b = 0.25$	84	
Tabelle 20.	Tabelle 21.		
T = 0.9647 - 2	T = 0.6389 - 2		
$A = 11 \cdot 10 \qquad C = 7 \cdot 09$	A = 21.33 $C = 15.38$		
a = 0.1287 $c = 0.0822$	$a = 0.1169 \qquad c = 0.0843$	3	
t $A-X$ k	$t \qquad A - X \qquad k$		
0.60 9.15 0.140	1.06 15.05 0.14	3	
1.15 7.72 0.137	2.06 11.15 0.14	3	
2.81 4.62 0.136	3.37 7.56 0.13	4	
$3.59 \qquad 3.69 \qquad 0.133$			
$k_m = 0.135 \qquad k_m/c = 1.65$	$k_m = 0.139$ $k_m/c = 1.66$		
$w_m = 0.035 \qquad k_b = 0.136$	$w_m = 0.030 \qquad \qquad k_b = 0.14$	41	
2. Versuche in ursprünglich v	vasserhaltigem Glyzerin.		
Tabelle 22.	Tabelle 23.		
T = 0.9647 - 2	T = 0.9647 - 2		
A = 8.30 $C = 22.83$	A = 8.85 $C = 14.60$		
a = 0.0964 $c = 0.2653$	a = 0.1027 $c = 0.1698$	3	
t $A-X$ k	t .1— X k		
0.61 5.99 0.232	0.97 6.36 0.14	8	
0.99 4.92 0.229	2.16 4.37 0.149		
1.99 3.01 0.221	3.20 3.14 0.14		
$2 \cdot 72$ $2 \cdot 20$ $0 \cdot 212$	4.08 2.49 0.13	5	
$k_m = 0.221 \qquad k_m/c = 0.832$	$k_m = 0.140 \qquad k_m/c = 0.88$	25	
$w_m = 0.711 \qquad w_0 = 0.683$	$w_m = 0.724$ $w_0 = 0.66$	04	
$k_b = 0.220$	kb = 0.139		

Tabelle 24.	Tabelle 25.
	T = 0.9647 - 2
T = 0.6365 - 2 A = 17.48 $C = 30.63$	A = 8.60 $C = 7.20$
a = 0.0952 $c = 0.1669$	a = 0.0995 $c = 0.0834$
$t \qquad A-X \qquad k$	t $A-X$ k
0.72 13.72 0.146	1.05 7.20 0.0733
1.62 10.20 0.145	2.54 5.70 0.0703
	9.44 9.43 0.0095
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.38 2.66 0.0690
3.90 5.27 0.134	9.67 1.93 0.0671
$k_m = 0.139 \qquad k_m/c = 0.832$	$k_m = 0.0690$ $k_m/c = 0.827$
$w_m = 0.697$ $w_0 = 0.669$	$w_m = 0.693$ $w_0 = 0.663$
$k_b \equiv 0.139$	$k_b = 0.0696$
Tabelle 26.	Tabelle 27.
T = 0.6365 - 2	T = 0.6365 - 2
A = 14.67 $C = 58.15$	A = 17.50 $C = 29.84a = 0.0951$ $c = 0.1621$
a = 0.0798 $c = 0.3165$	
$t \qquad A-X \qquad k$	$\begin{array}{cccc} t & A-X & k \\ 0.74 & 14.48 & 0.111 \end{array}$
0.69 10.40 0.216	
1.24 7.98 0.213	
2.08 5.25 0.214	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.32 1.06 0.102
45·13 0·80 —	21 02 1 00 0 102
$k_m = 0.212$ $k_m/c = 0.669$	$k_m = 0.106$ $k_m/c = 0.654$
$w_m = 1.343$ $w_0 = 1.318$	$w_m = 0.133$ $w_0 = 1.369$
$k_b = 0.211$	$k_b = 0.107$
Tabelle 28.	Tabelle 29.
T = 0.6365 - 2	$T=0\cdot 6365-2$
A = 18.09 $C = 35.42$	A = 15.55 $C = 15.14a = 0.0842$ $c = 0.0820$
$A = 18 \cdot 09$ $C = 35 \cdot 42$ $a = 0 \cdot 0983$ $c = 0 \cdot 1925$	
t $A-X$ k	t A $-X$ k
0.62 14.95 0.134	0.69 14.22 0.0562
1.95 10.12 0.130	2.99 10.61 0.0555
3·01 7·39 0·129 3·83 6·01 0·125	5.21 8.12 0.0542
3.83 6.01 0.125	8·17 5·65 0·0538
$6.12 \qquad 3.25 \qquad 0.122$	16.44 2.11 0.0528

V. Hydrozimtsäure.

 $k_m = 0.128$ $k_m/c = 0.665$ $w_n = 1.396$ $w_0 = 1.316$

 $k_b = 0.127$

 $k_m = 0.0541$ $k_m/c = 0.660$ $w_m = 1.329$ $w_0 = 1.305$

 $k_b = 0.0547$

a) In glyzerinischer Salzsäure.

0.4942~g der von Kahlbaum bezogenen Säure erforderten $35.06~cm^3$ einer 0.09219~n-Barytlauge (ber. 35.03) F. P. 48.5° .

1. Versuche in ursprünglich absolutem Glyzerin.

$$w_0 = 0.$$

 $T = 0.6389 - 2$

Tabelle 30.

Tabelle 31.

A = 16 $a = 0$		60·46 0·3322	$\begin{array}{c} A = 15.9 \\ a = 0.0 \end{array}$		60·57 0·3329
t	A-X	<i>k</i> :	t	A - X	k:
0.25	10.91	0.709	0.28	10.12	0.702
0.50	7.52	0.678	0.42	8.14	0.692
0.66	5.68	0.698	0.58	$6 \cdot 35$	0.688
0.85	4.23	0.693	0.68	5.38	0.692
$1 \cdot 03$	$3 \cdot 43$	0.660	0.87	4.05	0.683
1.36	$2 \cdot 15$	0.649	1 - 09	3.00	0.665
$k_m = 0$	680. $k_m/$	c = 2.05	$k_m \equiv 0.68$	k_m/c	= 2.06
$w_m = 0$	030. k	$c_b = 0.680$	$w_m = 0.02$	27 ks	= 0.685

Tabelle 32.

Tabelle 33.

A = 15 $a = 0$: 30·14 = 0·1654	$\begin{array}{c} A = 18 \cdot 5 \\ a = 0 \cdot 1 \end{array}$	$\begin{array}{cc} 9 & C = \\ 020 & c = \end{array}$	30·40 0·1667
t	A-X	k_{\perp}	t	A-X	k·
0.38	12.31	0.255	0-58	$12 \cdot 12$	0.320
0.95	$7 \cdot 27$	0.343	0.99	$8 \cdot 43$	0.347
1.28	5.57	0.344	1 · 28	6.80	0.341
$1 \cdot 36$	5.35	0.336	1.40	6.20	0.341
1.85	3.60	0.341	1.84	$4 \cdot 52$	0.334
$10 \cdot 12$	0.07		$10 \cdot 45$	0.05	_
$k_m = 0$.	332, k_m/c	= 2.01	$k_m \equiv 0.33$	38, k_m/c	= 2.03
$w_m \equiv 0$.	025, k_b	= 0.341	$w_m \equiv 0.0$	k_b	= 0.340

Tabelle 34.

Tabelle 35.

A = 1 $a = 1$		= 15-20 = 0-0832	$\begin{array}{c} A = 18 \cdot 4 \\ a = 0 \cdot 1 \end{array}$	C = 1008 $C = c$	15·26 0·0836
t	A - X	k·	t	A-X	k
0.48	$12 \cdot 21$	0.161	0.55	16.95	0.164
1.78	$7 \cdot 12$	0.175	$1 \cdot 31$	11.05	0.169
2.63	$5 \cdot 20$	0.170	$2 \cdot 34$	7.41	0.169
2.85	$4 \cdot 99$	0.164	2.54	6.95	0.167
16.58	0.11	_	2.87	6.16	0.166
			4.51	$3 \cdot 52$	0.159
$k_m = 0$	$0.169 k_m/c$	= 2.03	$k_m = 0$.	$167 k_m/c$	= 2.00
$w_m = 0$	0.023 k_b :	= 0.172	$w_m = 0$	k_b	= 0.171

2. Versuche in ursprünglich wasserhaltigem Glyzerin.

Tabelle 36.

Tabelle 37.

	(Zu Tabelle	36.)	$(\mathbf{Z}$	u Tabelle 37	·.)
t		, k	t		k
0.50	10.05	0.342	0.33	10.11	0.360
	6.52	0.382	0.52	8.61	0.363
0.98			1.04	5.35	0.380
1.33	4.85	0.366			
1.50	4.21	0.366	1.36	4.25	0.364
1.67	3.55	0.373	1.77	3.03	0.362
$2 \cdot 46$	$2 \cdot 03$	0.352	21.00	0.08	
$k_m = 0$	$\begin{array}{ccc} \cdot 366 & k_m/6 \\ \cdot 688 & w_0 \end{array}$	e = 1.11 = 0.663	$k_m \equiv 0$:	$\begin{array}{ccc} 367 & k_m/6 \\ 680 & w_0 \end{array}$	c = 1.11 c = 0.658
<i>1011</i> = 0	$k_b = 0.356$	•		$k_b = 0.367$	
	Tabelle 38		_	Tabelle 39.	_
	T = 0.6389			= 0.6389 -	
	$\begin{array}{ccc} \cdot 16 & C = \\ \cdot 0885 & c = \end{array}$			$\begin{array}{ccc} \cdot 93 & C = \\ \cdot 1036 & c = \end{array}$	
ŧ	A - X	k	t	A - X	Ì:
0.19	15.00		0.32	16.83	0.159
0.55	13 · 22	0·169 0·158	0.90	13.20	0.173
1.17	10.29	0.167	1.90	9.12	0.167
1.99	7.57	0.165	2.62	6.94	0.166
2.73	5·75	0.161	3.47	5.18	0 162
$\frac{2}{2} \cdot 29$	5.57	0.156		0.11	0 102
					4.69
$\kappa_m = 0$	162 km/c	= 0.982	$\kappa_m \equiv 0$	167 km/c	= 0.690
$w_m = 0$	$w_0 = w_0$	=0.015	$ic_m = 0$	$v_0 = v_0 = v_0$	
	$k_b=0.177$			$k_b = 0.173$	•
	Tabelle 40		m	Tabelle 41.	-
	T = 0.6389 -	– 2		= 0.6389	
	T = 0.6389 - 83 $C =$	- 2 : 15·21	A=15	= 0 · 6389 — · 85	= 15.00
a = 0	T = 0.6389 - 0.0812 $C = 0.0812$ $c = 0.0812$	- 2 : 15·21 : 0·0833	A = 15 $a = 0$	= 0.6389 -	= 15·00 = 0·0821
a = 0 t	T = 0.6389 - 0.0812 $C = 0.0812$ $c = A - X$	- 2 : 15 · 21 : 0 · 0833 k	A = 15 $a = 0$ t	= 0.6389 -	= 15·00 = 0·0821 k
a = 0 t 0.49	T = 0.6389 - 0.83 $C = 0.0812$ $c = 0.4 - X$ 13.52	- 2 : 15·21 : 0·0833	A = 15 $a = 0$ t 0.75	= 0.6389 - 0.85 $C = 0.0868$ $c = A - X$	15 · 00 = 0 · 0821 k 0 · 0884
a = 0 t 0.49 1.77	T = 0.6389 - 0.83 C = 0.0812 c = 0.081	- 2 : 15·21 : 0·0833	A = 15 $a = 0$ t 0.75 2.18	= 0.6389	15·00 0·0821 k 0·0884 0·0866
a = 0 t 0.49 1.77 3.19	T = 0.6389 - 0.0812 C = 0.0	- 2 : 15·21 : 0·0833	$ \begin{array}{c} A = 15 \\ a = 0 \\ t \\ 0.75 \\ 2.18 \\ 4.00 \end{array} $	= 0.6389 - 85 $C = 0.0868$ $c = A - X$ $= 13.61$ $= 10.27$ $= 7.15$	15·00 0·0821 k 0·0884 0·0866
$ \begin{array}{r} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \end{array} $	T = 0.6389 - 0.0812 C = 0.0	- 2 : 15·21 : 0·0833 k 0·0821 0·0812 0·0845 0·0900	$A = 15. \\ a = 0. \\ t \\ 0.75 \\ 2.18 \\ 4.00 \\ 4.75$	$\begin{array}{cccc} = 0.6389 - & & \\ 85 & C = \\ 0868 & c = & \\ & A - X \\ 13.61 & & \\ 10.27 & & \\ 7.15 & & \\ 6.21 & & \\ \end{array}$	15·00 0·0821 k 0·0884 0·0866 0·0864 0·0857
$ \begin{array}{r} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \end{array} $	T = 0.6389 - 0.0812 C = 0.0	- 2 : 15·21 : 0·0833 k 0·0821 0·0812 0·0845 0·0900 0·0834	A = 15 $a = 0$ t 0.75 2.18 4.00 4.75 5.08	= 0.6389 - 0.868	= 15·00 = 0·0821 k 0·0884 0·0866 0·0864 0·0857 0·0857
$ \begin{array}{r} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \end{array} $	T = 0.6389 - 0.0812 C = 0.0	- 2 15·21 0·0833 k 0·0821 0·0812 0·0845 0·0900 0·0834 0·0802	A = 15 $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53	= 0.6389 - 0.868 C = 0.0868	= 15 · 00 = 0 · 0821
$ \begin{array}{r} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \end{array} $	T = 0.6389 - 0.0812 C = 0.0	- 2 15·21 0·0833 k 0·0821 0·0812 0·0845 0·0900 0·0834 0·0802	A = 15 $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53	= 0.6389 - 0.868 C = 0.0868	= 15 · 00 = 0 · 0821
$ \begin{array}{r} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \end{array} $	T = 0.6389 - 0.83 C = 0.0812 c = 0.081	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ c_0 = 0 \cdot 702 \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 · 00 0 · 0821 k 0 · 0884 0 · 0866 0 · 0864 0 · 0857 0 · 0831 = 1 · 04 = 0 · 600
$ \begin{array}{r} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \end{array} $	T = 0.6389 - 0.812 C = 0.0812 c = 0.08	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	= 0.6389 - 0.868 c = 0.0888 c = 0.0924 c = 0.0888 c = 0.0924 c = 0.0888 c = 0.0924 c = 0.0924 c = 0.0888 c = 0.0924 c = 0.0924 c = 0.0924 c = 0.0888 c = 0.0924 c = 0.09	15 · 00 0 · 0821 k 0 · 0884 0 · 0866 0 · 0864 0 · 0857 0 · 0831 = 1 · 04 = 0 · 600
$ \begin{array}{ccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4.3.52$ 10.66 7.97 6.89 5.88 4.07 0.0838 $k_{m}/24$ $k_{b} = 0.0886$ Tabelle 42.	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ c = 0 \cdot 702 \\ 0 \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 · 00 0 · 0821 k 0 · 0884 0 · 0866 0 · 0864 0 · 0857 0 · 0831 = 1 · 04 = 0 · 600
$ \begin{array}{ccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4-X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.0838 $k_{m}/24$ $k_{b} = 0.0886$ $Tabelle 42$ $T = 0.6389 - 889$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	$= 0.6389 - 0.868 c = 0.868 c = 4 - X$ 13.61 10.27 7.15 6.21 5.82 5.75 $0849 k_m/c$ $625 w_m$ $k_b = 0.0924$ Tabelle 43. $= 0.9647 - 0.088$	= 15·00 = 0·0821 k 0·0884 0·0866 0·0864 0·0857 0·0857 0·0831 = 1·04 = 0·600
$ \begin{array}{ccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4-X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.0838 $k_{m}/24$ $k_{b} = 0.0886$ $Tabelle 42$ $T = 0.6389 - 889$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ c = 0 \cdot 702 \\ 0 \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	= 0.6389 - 0.868 C = 0.868	15 · 00 0 · 0821 k 0 · 0884 0 · 0866 0 · 0864 0 · 0857 0 · 0857 0 · 0831 = 1 · 04 = 0 · 600
$ \begin{array}{cccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} k_m = 0 \\ w_m = 0 \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4-X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.0838 k_{m}/r $k_{b} = 0.0880$ $Tabelle 42$ $T = 0.6389 - 84$ $C = 0.6389 - 84$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	= 0.6389 - 0.868 C = 0.868	= 15·00 = 0·0821 k 0·0884 0·0866 0·0864 0·0857 0·0857 0·0831 = 1·04 = 0·600
$ \begin{array}{ccc} a = 0 \\ t \\ 0 & 49 \\ 1 & 77 \\ 3 & 19 \\ 3 & 70 \\ 4 & 82 \\ 7 & 00 \\ k_m = 0 \\ w_m = 0 \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4-X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.0838 k_{m}/r $k_{b} = 0.0880$ $Tabelle 42$ $T = 0.6389 - 84$ $C = 0.6389 - 84$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$	= 0.6389 - 0.868 C = 0.868	= 15·00 = 0·0821 k 0·0884 0·0866 0·0864 0·0857 0·0857 0·0831 = 1·04 = 0·600
$ \begin{array}{cccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} k_m = 0 \\ w_m = 0 \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4-X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.838 $k_{m}/$ 724 w $k_{b} = 0.0886$ $Tabelle 42$ $T = 0.6389 - 84$ $C = 0.0812$ $c = 0.0812$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_{m} = 0$ $w_{m} = 0$ t T $A = 6$ $a = 0$ t	= 0.6389 - 0.868 C = 0.868	15 · 00 10 · 0821 10 · 0884 10 · 0866 10 · 0864 10 · 0857 10 · 0857 10 · 0831 10 = 1 · 04 11 = 0 · 600 12 · 28 · 03 12 · 28 · 03 13 · 249 14 · 26 · 26 · 26 · 26 · 26 · 26 · 26 · 2
$ \begin{array}{cccc} a = 0 \\ t \\ 0 & 49 \\ 1 & 77 \\ 3 & 19 \\ 3 & 70 \\ 4 & 82 \\ 7 & 00 \\ k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} k_m = 0 \\ w_m = 0 \\ t \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4-X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.838 $k_{m}/$ 724 w $k_{b} = 0.0886$ $Tabelle 42$ $T = 0.6389 - 84$ $C = 0.0812$ $c = 4-X$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_{m} = 0$ $w_{m} = 0$ t 0.48	= 0.6389 - 0.868 c = 0.8	2 15 · 00 = 0 · 0821 k 0 · 0884 0 · 0866 0 · 0864 0 · 0857 0 · 0857 0 · 0831 = 1 · 04 = 0 · 600 2 2 28 · 03 = 0 · 3249 k 0 · 243
$ \begin{array}{cccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} k_m = 0 \\ w_m = 0 \\ t \\ 0.33 \\ \end{array} $	$T = 0.6389 - 88$ $C = 0.0812$ $c = 4X$ 13.52 10.66 7.97 6.89 5.88 4.07 0.838 k_{mh} 724 w $k_{b} = 0.0886$ $Tabelle 42$ $T = 0.6389 - 84$ $C = 0.0812$ $c = 4X$ 12.12	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_{m} = 0$ $w_{m} = 0$ t 0.48 1.07	= 0.6389 - 0.868 C = 0.868	2 15 · 00 = 0 · 0821 k 0 · 0884 0 · 0866 0 · 0864 0 · 0857 0 · 0857 0 · 0831 = 1 · 04 = 0 · 600 2 2 28 · 03 = 0 · 243 0 · 243 0 · 260
$ \begin{array}{cccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} 4 = 14 \\ a = 0 \\ t \\ 0.33 \\ 0.83 \\ 1.50 \end{array} $	$T = 0.6389 - 0.812$ $C = 0.0812$ $C = 4.52$ 10.66 7.97 6.89 5.88 4.07 0.0838 $k_{th} = 0.0880$ $t_{th} = 0.0880$ $t_{th} = 0.6389 - 0.0812$ $t_{th} = 0.0812$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} -2 \\ 59 \cdot 62 \\ 0 \cdot 3263 \\ k \\ 0 \cdot 266 \\ 0 \cdot 270 \\ 0 \cdot 267 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$ t 1.07 1.63	= 0.6389 - 0.868 C = 0.868	2 15 · 00 1
$a = 0$ t 0.49 1.77 3.19 3.70 4.82 7.00 $k_m = 0$ $w_m = 0$ t 0.33 0.83 1.50 1.75	T = 0.6389 - 0.812 $C = 0.0812$ $C = 4.52$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} -2 \\ 59 \cdot 62 \\ 0 \cdot 3263 \\ k \\ 0 \cdot 266 \\ 0 \cdot 270 \\ 0 \cdot 267 \\ 0 \cdot 268 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$ t $4 = 6$ $a = 0$ t 0.48 1.07 1.63 2.01	= 0.6389 - 0.868 c = 0.8	2 10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{cccc} a = 0 \\ t \\ 0.49 \\ 1.77 \\ 3.19 \\ 3.70 \\ 4.82 \\ 7.00 \\ k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} k_m = 0 \\ w_m = 0 \end{array} $ $ \begin{array}{c} 4 = 14 \\ a = 0 \\ t \\ 0.33 \\ 0.83 \\ 1.50 \end{array} $	$T = 0.6389 - 0.812$ $C = 0.0812$ $C = 4.52$ 10.66 7.97 6.89 5.88 4.07 0.0838 $k_{th} = 0.0880$ $t_{th} = 0.0880$ $t_{th} = 0.6389 - 0.0812$ $t_{th} = 0.0812$	$\begin{array}{c} -2 \\ 15 \cdot 21 \\ 0 \cdot 0833 \\ k \\ 0 \cdot 0821 \\ 0 \cdot 0812 \\ 0 \cdot 0845 \\ 0 \cdot 0900 \\ 0 \cdot 0834 \\ 0 \cdot 0802 \\ c = 1 \cdot 01 \\ 0 = 0 \cdot 702 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} -2 \\ 59 \cdot 62 \\ 0 \cdot 3263 \\ k \\ 0 \cdot 266 \\ 0 \cdot 270 \\ 0 \cdot 267 \\ \end{array}$	$A = 15$ $a = 0$ t 0.75 2.18 4.00 4.75 5.08 7.53 $k_m = 0$ $w_m = 0$ t 1.07 1.63	= 0.6389 - 0.868 C = 0.868	2 15 · 00 1

(Zu Tabelle 42.) $k_m = 0.268$ $k_m/c = 0.818$ $w_m = 1.302$ $w_0 = 1.277$ $k_b = 0.263$	(Zu Tabelle 43.) $k_m = 0.259$ $k_m/c = 0.797$ $w_m = 1.339$ $w_0 = 1.316$ $k_b = 0.258$
Tabelle 44.	Tabelle 45.
$T = 0.6389 - 2$ $A = 16.18 \qquad C = 29.09$ $a = 0.0884 \qquad c = 0.1590$ $t \qquad A-X \qquad k$ $0.44 \qquad 14.20 \qquad 0.128$ $0.92 \qquad 12.31 \qquad 0.129$ $1.78 \qquad 9.48 \qquad 0.131$ $2.75 \qquad 7.18 \qquad 0.128$ $3.48 \qquad 5.77 \qquad 0.129$ $k_m = 0.129 \qquad k_m/c = 0.811$ $w_m = 1.330 \qquad w_0 = 1.307$ $k_b = 0.127$	T = 0.9647 - 2 $A = 6.33$
Tabelle 46.	Tabelle 47.
T = 0.6389 - 2 A = 15.40 $C = 16.84a = 0.0838$ $c = 0.0916$	T = 0.6389 - 2 $A = 12.95$ $C = 14.96$ $a = 0.0705$ $c = 0.0814$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} t & A-X & k \\ 2 \cdot 25 & 9 \cdot 32 & 0 \cdot 0635 \\ 4 \cdot 33 & 6 \cdot 71 & 0 \cdot 0660 \\ 6 \cdot 75 & 4 \cdot 66 & 0 \cdot 0657 \\ 7 \cdot 25 & 4 \cdot 40 & 0 \cdot 0647 \\ 9 \cdot 72 & 3 \cdot 15 & 0 \cdot 0632 \end{array}$
$k_m = 0.0720$ $k_m/c = 0.786$ $w_m = 1.336$ $w_0 = 1.310$ $k_b = 0.0728$	$k_m = 0.0649 k_m/c = 0.797 w_m = 1.362 w_0 = 1.342 k_b = 0.0641$

b) In glykolischer Salzsäure.

$$T = 0.6389 - 2$$

1. Versuche in ursprünglich absolutem Glykol. $w_0=0.$

Tabelle 48.				Tabelle 49.			
A = 18.8 $a = 0.9$	$\begin{array}{cc} 87 & C = \\ 0920 & c = \end{array}$	69·23 0·3376		$\begin{array}{ccc} 9 \cdot 24 & C = \\ 0 \cdot 0938 & c = \end{array}$			
t	X-K	\boldsymbol{k}	t	A-X	k		
0.17	$10 \cdot 12$	1.59	0.13	$12 \cdot 05$	1.56		
0.28	6.90	1.56	0.21	$9 \cdot 11$	1.55		
0.48	$3 \cdot 45$	1.54	0.29	6.78	1.57		
$3 \cdot 15$	0.08	~-	0.51	$3 \cdot 15$	1.54		
$k_m = 1.5$	k_m/ϵ	c = 4.65	$k_m = 1$.56 km/c	= 4.59		
$w_m = 0.0$	k_b	= 1.63	$v_m = 0$	0.029 k_b	= 1.65		

Tabelle	50.	Tabel	le 51.
A = 25.46 a = 0.1239	C = 34.95	$\begin{array}{c} A = 22 \cdot 49 \\ a = 0 \cdot 1094 \end{array}$	C = 33.35 c = 0.1623
	0.784 0.807 0.798 0.771	$ \begin{array}{cccc} 0 \cdot 19 & 16 \\ 0 \cdot 32 & 12 \\ 0 \cdot 50 & 9 \\ 0 \cdot 65 & 7 \end{array} $	$\begin{array}{ccc} -X & & k \\ \cdot 45 & & 0 \cdot 714 \\ \cdot 81 & & 0 \cdot 764 \\ \cdot 62 & & 0 \cdot 737 \\ \cdot 21 & & 0 \cdot 760 \\ \cdot 12 & & 0 \cdot 737 \end{array}$
$k_m = 0.789$ $w_m = 0.038$	$\begin{array}{c} k_m/c = 4.64 \\ k_b = 0.772 \end{array}$	$k_m = 0.744$ $w_m = 0.033$	$k_m/c = 4.58$ $k_b = 0.743$
Tabelle	52.	Tabel	le 53.
$\begin{array}{c} A = 26.85 \\ a = 0.1304 \end{array}$		$\begin{array}{c} A = 22 \cdot 24 \\ a = 0 \cdot 1080 \end{array}$	
$\begin{array}{cccc} t & .4 - X \\ 0.63 & 15.03 \\ 0.81 & 12.95 \\ 1.31 & 8.65 \\ 1.43 & 7.59 \\ 12.20 & 0.08 \end{array}$	0·400 0·400 0·365 0·384	$egin{array}{cccc} 0 \cdot 13 & 19 \\ 0 \cdot 52 & 14 \\ 0 \cdot 54 & 10 \\ 1 \cdot 22 & 7 \\ 1 \cdot 97 & 4 \\ \end{array}$	$\begin{array}{ccc} -X & & k \\ \cdot 80 & & 0 \cdot 388 \\ \cdot 21 & & 0 \cdot 374 \\ \cdot 74 & & 0 \cdot 376 \\ \cdot 62 & & 0 \cdot 381 \\ \cdot 12 & & 0 \cdot 372 \end{array}$
$k_m = 0.379$ $w_m = 0.040$	$k_{m}/c = 4 \cdot 49$ $k_{b} \equiv 0 \cdot 382$	$k_m = 0.376$ $w_m = 0.032$	$k_m/e = 4.55$ $k_b = 0.379$
		ch wasserhaltig	
Tabelle			le 55 .
$A = 21 \cdot 20,$ $a = 0 \cdot 1032,$	c = 0.3089	$A = 22 \cdot 93$ $a = 0 \cdot 1115$	
$ \begin{array}{cccc} t & .4 - 3 \\ 0.40 & 11.07 \\ 0.65 & 7.38 \\ 0.89 & 5.16 \\ 1.21 & 3.35 \\ 7.50 & 0.06 \\ k_m = 0.695 \\ m_m = 0.702 \end{array} $	0·705 0·705 0·690 0·662	$ \begin{array}{cccc} 0.28 & 18 \\ 0.90 & 10 \\ 1.33 & 7 \\ 1.53 & 6 \end{array} $	$-X$ k $\cdot 71$ 0.316 $\cdot 98$ 0.355 $\cdot 61$ 0.360 $\cdot 60$ 0.360 $\cdot 78$ 0.346 $k_m/c = 2.18$ $w = 0.662$
$k_b = 0$ Tabello	671	$k_b =$: 0·354
$A = 21 \cdot 32$ $a = 0 \cdot 1037$		$A=22\cdot38$	
t A—X 0·23 17·85 0·43 14·92 0·90 10·13 1·38 7·09	0·336 0·361 0·358 0·346	$ \begin{array}{ccc} 0.42 & 19 \\ 1.03 & 15 \\ 1.75 & 11 \\ 2.52 & 8 \end{array} $	-X k ·15 0·161 ·04 0·168 ·15 0·173 ·18 0·173

2.10

4.12

0.340

3.25

6.12

0.173

(Zu Tabelle 56.)	(Zu Tabelle 57.)
$k_m = 0.351$ $k_m/c = 2.16$	$k_m = 0.171$ $k_m/c = 2.11$
$w_m = 0.691$ $w_0 = 0.661$	$w_m = 0.695$ $w_0 = 0.665$
$k_b = 0.355$	$k_b = 0.176$
Tacelle 58.	Tabelle 59.
A = 18.38 $C = 67.46$	$A = 23 \cdot 44$ $C = 33 \cdot 14$
a = 0.0894 $c = 0.3283$	$a = 0 \cdot 1139$ $c = 0 \cdot 1610$
1.78 2.50 0.489	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Tabelle 60.	Tabelle 61.
A = 22.79 $C = 33.14$	A = 25.44 $C = 16.75$
a = 0.1107 $c = 0.1610$	a = 0.1234 $c = 0.0812$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} t & A-X & g \\ 0.89 & 20.05 & 0.116 \\ 1.10 & 18.99 & 0.115 \\ 2.73 & 12.22 & 0.117 \\ 4.15 & 8.43 & 0.116 \\ 4.56 & 7.68 & 0.114 \\ \end{array}$
$k_m = 0.234$ $k_m/c = 1.45$	$k_m = 0.116$ $k_m/c = 1.43$
$w_m = 1.351$ $w_0 = 1.318$	$w_m = 1.341$ $w_0 = 1.307$
$k_b = 0.232$	$k_b = 0.118$

VI. 2. 4-Dinitrobenzoesäure.

Sowohl bei der 3, 5- als insbesondere bei der 2, 4-Dinitrobenzoesäure muß namentlich in wasserfreiem Glyzerin die Chlorhydrinbildung berücksichtigt werden.

Die gebildete Chlorhydrinmenge $(h_1$ bzw. $h_2)$ wurde nach der Formel $h_1 = 5 \cdot 10^{-5}$. Ct für Versuche mit ursprünglich absolutem und $h_2 = 5 \cdot 10^{-6}$. Ct für solche mit ursprünglich wasserhaltigem Glyzerin berechnet, zu der zur Zeit t verbrauchten Barytlauge addiert und mit diesen so korrigierten $A-X_k$ die korrigierten k_k ermittelt. Die einzelnen c_m bezeichnen die seit Versuchsbeginn bis zur Zeit t im Mittel vorhandenen Salzsäurekonzentrationen, c_M ist der unter Berücksichtigung des Gewichtes jeder Einzelbestimmung errechnete Mittelwert.

Bei der Berechnung der k_m und c_M wurde das Gewicht der einzelnen k_k und c_m mittels $A-X_k$ in der früher angegebenen Weise bestimmt.

Die nach den Angaben der Literatur ¹⁵ hergestellte 2, 4-Dinitrobenzoesäure erwies sich als rein: $0.5212\,g$ verbrauchten $26.65\,cm^3$ 0.09219 n. Barytlauge (ber. 26.67). F. P. 179—180°.

1. Versuche in ursprünglich absolutem Glyzerin.

$$w_0 = 0$$

 $T = 0.6366 - 2$

Tabelle 62.

		= 9.56 = 0.0522		$C = 33 \cdot 49$ $c = 0 \cdot 1828$		
t	A - X	$A-X_k$	106k	c_m	$10^{6}.k_{k}$	$10^5 . k_k/c_m$
$0 \cdot 25$	$9 \cdot 55$		_	- .		
$138 \cdot 7$	8.69	$8 \cdot 92$	398	0.1822	216	118
646.8	5.87	6.95	327	0.1799	214	119
1050	$3 \cdot 98$	$5 \cdot 74$	362	0.1780	211	118
1105	$3 \cdot 79$	$5 \cdot 64$	363	0.1778	207	114
1816	1.08	$4 \cdot 12$	521	0.1742	201	115
$k_{km}.10^6 = 208$	$w_m = 0$	$014 k_{km}/c_{\lambda}$	$t 10^{\circ} = 1$	$17 c_{\mathcal{M}} = 0.1$	783 kb=	$=210.10^{-6}$

Tabelle 63.

		= 7.86 = 0.0429		C = 32.90 $c = 0.1796$		
t	A - X	$A-X_k$	10°%	c_m	$k_k \ 10^6$	$k_{\mathcal{K}}/c_m \cdot 10^5$
0.28	7.86					
$643 \cdot 4$	$4 \cdot 73$	5.79	343	0.1767	207	117
1048	2.97	4.69	403	0.1749	214	122
1166	$2 \cdot 63$	4.55	408	0.1740	204	117
k_{km} , $10^6 = 209$	$w_m = 0.0$	k_{km}/c_{λ}	$a 10^5 = 11$	$9 c_m = 0.17$	53 k _b =	$=207.10^{-6}$

Tabelle 64.

		1 = 6.16		C = 60.82		
	(n = 0.0337		c = 0.3325		
t	A - X	$A-X_k$	10°%	Cm	$10^6 k_k$	k_{K}/e_{m} . 10^{5}
0.18	$6 \cdot 16$	_		_		
$56 \cdot 43$	$5 \cdot 68$	5.85	631	0.3321	402	121
$187 \cdot 5$	$4 \cdot 64$	$5 \cdot 21$	658	0.3310	390	118
$465 \cdot 9$	$2 \cdot 57$	$3 \cdot 99$	816	0.3287	405	123
$749 \cdot 9$	0.94	$3 \cdot 22$	1089	0.3263	376	115
$10^6.k_{km} = 389$	$w_m = 0$	·009 105.k	$_{km/c} \underline{\mathbf{y}} = 1$	$18 c_{M} = 0.32$	91 kb=	$=389.10^{-6}$

Tabelle 65.

$$A = 7.33$$
 $C = 61.27$ $c = 0.3349$

¹⁵ J. prakt. Chem. [2] 76, 1907 S. 287 (Curtius, Bollenbach).

157	/nn_1	L . 1	١.	CEN	
(Zu	La	ner.	ıe	65.	1

t	A-X	$A-X_k$	10^8k	c_m	$10^6 k_k$	$10^5 k_k/c_m$
0.20	$7 \cdot 32$	-			_	
$68 \cdot 76$	6.67	6.88	59 8	0.3344	401	120
85.88	6.51	$6 \cdot 77$	601	0.3337	403	121
428 · 1	3.68	4.99	699	0.3314	390	118
644.5	2.15	$4 \cdot 12$	826	0.3296	388	118
$800 \cdot 9$	1.16	$3 \cdot 61$	999	0.3283	384	117
$10^{6}.k_{km}=387$	$w_m = 0.0$	11 10 ⁵ .k _k	$m/c_{\mathcal{M}}=11$	$7 c_M = 0.35$	308 k _b :	= 390.10 ⁻⁶

Tabelle 66.

		6·31 0·0345	-	= 102.0 = 0.5588			
t	A-X	$A-X_k$	105X:	c_m	$10^{8}k_{k}$	$10^5 k_k/c$	
0.18	6.31		_	_	_		
$99 \cdot 21$	5.73	5.93	108	0.5577	678	121	
$94 \cdot 26$	4.97	$5 \cdot 45$	110	0.5572	672	121	
$234 \cdot 4$	$3 \cdot 20$	4.40	126	0.5551	667	120	
$362 \cdot 0$	1.82	$3 \cdot 67$	149	0.5535	649	117	
$462 \cdot 3$	0.85	3.18	192	0.5517	643	116	
$10^6.k_{km} = 651$	$w_m = 0.009$	105.k	$c_m/c_{\mathbf{M}} = 117$	$c \mathbf{x} = 0.5$	543 k _b =	= 654.10 ⁻⁶	į

Tabelle 67.

		= 5.54 = 0.0303		U = 108.7 $C = 0.5953$		
t	A - X	$A-X_k$	105k	c_m	$10^6 k_k$	$10^5 k_{m k}/c$
0.20	5.53	_	_	_		
103.6	4.10	4.66	125	0.5936	728	123
251 · 4	$2 \cdot 35$	$3 \cdot 72$	148	0.5913	689	116
$10^6 \cdot k_{km} = 697$	$w_m = 0.0$	007 105.k _k	<i>m/с</i> м = 11	$8 c_{\mathbf{M}} = 0.59$	21 k _b =	= 699.10-6

2. Versuche in ursprünglich wasserhaltigem Glyzerin.

$$T = 0.9647 - 2$$

Tabelle 68.

		$ \begin{array}{c} A = 4.86 \\ a = 0.0564 \end{array} $		$C = 19 \cdot 22$ $c = 0 \cdot 2229$		
t	A-X	$A-X_k$	10°k	c_m	$10^{6}k_{k}$	$10^6 k_k/c_m$
$520 \cdot 2$	4.11	4.17	140	0.2225	128	575
1110	$3 \cdot 44$	3.55	135	0.2223	123	553
2502	2.18	$2 \cdot 42$	139	0.2215	121	546
4542	0.96	1.40	155	0.2204	119	54 0
$10^{a}.k_{km} = 122$	w	m = 0.668	10	$5.k_{km}/c_{M}=552$		$c_{M}=0.2210$
	u	$v_0 = 0.653$	k_b	$= 121.10^{-6}$		

Tabelle 69.

		A = 3.15 $a = 0.0366$		C = 28.56 $c = 0.3318$		
t $455 \cdot 4$ $862 \cdot 4$ 1509 2255 2854	A-X 2·54 2·05 1·52 1·07 0·66	$A-X_k$ $2\cdot 60$ $2\cdot 17$ $1\cdot 74$ $1\cdot 38$ $1\cdot 06$	106k 206 217 210 217 238	c _m 0·3314 0·3311 0·3306 0·3301 0·3295	10 ⁶ k _k 184 188 171 167 166	10 6 k_k/c_m 555 568 517 506 504
$10^{6}.k_{km} = 172$	u	$v_m = 0.684$ $w_0 = 0.674$		$k_{km}/c_{M} = 521$ = 178.10 ⁻⁶		$c_{M} \equiv 0.3302$

Tabelle 70.

Tabelle 71.

		$ \begin{array}{c} A = 3 \cdot 10 \\ a = 0 \cdot 0361 \end{array} $		$C = 57 \cdot 74$ $c = 0.6718$		
t	A - X	$A-X_k$	10°k	c _m	$10^8 kk$	$10^6 k_k/c_m$
107.2	2.79	$2 \cdot 82$	434	0.6717	391	582
$539 \cdot 3$	1.83	1.99	426	0.6710	358	534
$763 \cdot 7$	1.38	1.60	461	0.6705	377	562
1338	0.61	1.00	528	0.6692	368	550
$10^{6}.k_{km} = 373$	$\imath c$	m=0.677	106	$5.k_{km}/c_{M}=556$		$c_{M} = 0.6702$
	и	$v_0 = 0.668$	k_b	$=356.10^{-6}$		

Tabelle 72.

		$ \begin{array}{l} A = 5.80 \\ a = 0.0671 \end{array} $		$C = 15 \cdot 36$ $c = 0 \cdot 1777$		
t	AX	$A - X_k$	$10^7 k$	C _m	$107k_k$	$10^6 k_k/c_m$
$836 \cdot 8$	5.21	$5 \cdot 27$	556	0.1773	496	280
1488	4.80	4.91	551	0.1771	485	274
2615	4.03	$4 \cdot 32$	604	0.1760	489	278
5231	2.70	3.17	1019	0.1750	501	286
$10^{\circ}.k_{km} = 495$	w,	n = 1.324		$k_{km}/c_{M}=282$		$c_M = 0.1758$
	w	$_{0}=1.312$	k_b	$=489.10^{-7}$		

Tabelle 73.

		$ \begin{array}{c} A = 3.96 \\ a = 0.0460 \end{array} $		$C = 28 \cdot 62$ $c = 0 \cdot 3317$		
t	A-X	$A-X_k$	10°k	c_m	$10^7 k_k$	$10^6 k_k/c_m$
574.1	$3 \cdot 43$	3.51	110	0.3310	925	279
1267	$2 \cdot 83$	3.01	116	0.3306	946	286
1967	$2 \cdot 34$	2.62	117	0.3300	915	277
3632	1.33	1.85	131	0.3286	912	277
$10^{7}.k_{km}=919$	и	$v_m = 1.319$		$k_{km}/c_M = 279$		$c_M = 0.3300$
	7	$v_0 = 1.309$	k_{b}	$=921.10^{-7}$		

Tabelle 74.

		A = 3.75 $a = 0.0435$		C = 31.59 $c = 0.3661$		
t	A-X	$A - X_k$	106k	c_m	$10^6 k_k$	$10^6k_k/c_m$
$573 \cdot 3$	$3 \cdot 21$	$3 \cdot 29$	118	0.3656	99	271
1266	$2 \cdot 56$	$2 \cdot 76$	131	0.3649	105	288
1966	2.06	$2 \cdot 36$	132	0.3643	102	280
3715	1.00	$1 \cdot 59$	154	0.3627	100	276
$10^{4}.k_{km} = 101$		$m=1\cdot321$		$.k_{km}/c_{M}=277$	Ó	$e_{M} = 0.3640$
	14	$r_0 = 1.311$	k_{b} :	$= 101.10^{-6}$		

Tabelle 75.

		A = 2.64 $a = 0.0306$		C = 51.27 c = 0.5951		
t	A-X	$A-X_k$	10°%	e_m	$10^{6}k_{k}$	$10^6 k_k/c_m$
110.6	$2 \cdot 50$	2.53	214	_	167	
551 · 4	2.00	2.14	219	0.5943	165	278
$674 \cdot 5$	1.87	2.04	222	0.5941	166	279
1251	$1 \cdot 31$	1.63	244	0.5932	169	285
1582	1.05	1 · 46	253	0.5927	163	275
2616	0.58	1.25	251	0.5912	156	264
$10^6. k_{km} = 163$	и	m=1.328	109	$3.k_{km}/c_M = 275$		$c\mathbf{x} = 0.5928$
	i	$v_0 = 1.321$	k_b	$= 164.10^{-6}$		

VII. 3,5-Dinitrobenzoesäure.

a) In glyzerinischer Salzsäure.

Der Schmelzpunkt des von Kahlbaum bezogenen Präparates wurde übereinstimmend mit den Angaben in der Literatur 16 bei 2040 gefunden; 0.6241~g der Säure verbrauchten $31.99~cm^3$ einer 0.09219~n-Barytlauge. (Ber. 31.94).

¹⁶ Tiemann und Judson geben 202º an (Ber. D. ch. G. 3, S 224). Muretow 204-205º (Z. f. Chem. 1870, S. 641).

1. Versuche in ursprünglich absolutem Glyzerin. $w_0 \equiv 0$.

Tabelle 76.

Tabelle 77.

Tabelle 78.

$$T = 0.6371 - 2$$

$$A = 2.38 \qquad C = 107.4$$

$$a = 0.0131 \qquad c = 0.5886$$

$$t \qquad A - X \qquad A - X_k \qquad 10^4 k \qquad c_m \qquad 10^4 k_k$$

$$0.31 \qquad 2.35 \qquad - \qquad - \qquad - \qquad -$$

$$7.75 \qquad 1.85 \qquad 1.89 \qquad 142 \qquad 0.5878 \qquad 130$$

$$21.25 \qquad 1.19 \qquad 1.30 \qquad 142 \qquad 0.5860 \qquad 124$$

$$39.18 \qquad 0.64 \qquad 0.85 \qquad 146 \qquad 0.5826 \qquad 114$$

$$43.97 \qquad 0.45 \qquad 0.69 \qquad 165 \qquad 0.5821 \qquad 123$$

$$10^4 k_m = 121 \qquad w_m = 0.004 \qquad 10^4 k_m/c_M = 207 \qquad c_M = 0.5842$$

$$10^4 k_b = 123.6 \qquad f_{\%} = -2.15 \qquad v = 0.09$$

2. Versuche in ursprünglich wasserhaltigem Glyzerin.

Tabelle 79.

$$T = 0.6371 - 2$$

$$A = 2.29 C = 60.95$$

$$a = 0.0125 c = 0.3325$$

(Zu Tabelle 79.)

t	A— X	A - X	105 k	105 k	
0.25	$2 \cdot 26$	_			
$53 \cdot 04$	1 · 41	$1 \cdot 42$	397	391	
$73 \cdot 00$	1.17	$1 \cdot 19$	400	394	
116.6	0.78	0.82	401	382	
$140 \cdot 9$	0.65	0.69	388	370	
$173 \cdot 3$	0.45	0.50	408	381	
0	004 4047	/ 115		0.9901	

 $10^5 k_{km} = 382$ $w_0 = 0.621$ $10^4 k_{km}/c_M = 115$ $c_M = 0.3324$ $w_m = 0.625$

Tabelle 80.

$$T = 0.6371 - 2$$

$$A = 2.42 \qquad C = 59.68$$

$$a = 0.0132 \qquad c = 0.3252$$

$$t \qquad A - X \qquad A - X \qquad 10^5 k \qquad 10^5 k$$

$$0.24 \qquad 2.42 \qquad - \qquad - \qquad -$$

$$28.95 \qquad 2.15 \qquad 2.15 \qquad 183 \qquad 183$$

$$67.70 \qquad 1.83 \qquad 1.85 \qquad 181 \qquad 175$$

$$116.3 \qquad 1.49 \qquad 1.52 \qquad 182 \qquad 175$$

$$252.4 \qquad 0.86 \qquad 0.93 \qquad 179 \qquad 165$$

$$310.0 \qquad 0.63 \qquad 0.72 \qquad 189 \qquad 170$$

 $10^5 k_{km} = 170$ $w_0 = 1.298$ $10^5 k_{km}/c_M = 523$ $c_m = 0.3251$ $w_m = 1.302$

b) In äthylalkoholischer Salzsäure.

Die seinerzeit¹⁷ ausgeführten Versuchsreihen hatten schon bei einem mittleren Wassergehalte von 0.073 Molen pro Liter ein erheblich rascheres Ansteigen der Konstanten als proportional der Salzsäurekonzentration ergeben. Es wurde nämlich für cu = $=0.159, 0.319, 0.637, 10^4 k_m/c = 98, 114, 141$ gefunden. Diese Abweichung von der Proportionalität wurde von Heinrich Goldschmidt¹⁸ bestritten. Indessen konnte gezeigt werden¹⁹, daß auch bei den von letzterem 20 mitgeteilten Versuchsreihen von Udby sogar schon bei einem wesentlich kleineren mittleren Wassergehalt ein (natürlich schwächerer) Gang der k/c-Werte im gleichen Sinne vorhanden ist: Nach Reduktion auf die gleiche mittlere Wasserkonzentration von 0.025 Molen pro Liter ergaben diese U d byschen Versuchsreihen für $c = 0.1, 0.2, 0.4, 0.673, 10^4, k_m/c = 140, 142, 159,$ 164. Dennoch schien es wünschenswert, die Veresterungsgeschwindigkeit der 3, 5-Dinitrobenzoesäure mit äthylalkoholischer Salzsäure abermals zu messen. Dies-geschah tatsächlich schon im Jahre 1911, aus äußeren Gründen erfolgt die Veröffentlichung dieser Versuchsreihen - teils vollständig, teils bloß unter Angabe der erhaltenen Mittelwerte -- erst nachstehend im Zusammenhang mit den von Herrn Ostermann in Glyzerin ausgeführten.

In den nachstehenden Tabellen wurde die Korrektur für die Chloräthylbildung mit der seinerzeit mitgeteilten Formel²¹

 ¹⁷ Sitzb. Ak. Wiss. Wien (II b) 116, 1907, S. 471, 479.
 ¹⁸ Z. Elektrochem. 15, 1909, S. 500.
 ²⁰ Z. Elektrochem. 15, 1909, S. 305.
 ²¹ Sitzb. Ak. Wiss. Wien (II b) 116, 1907, S. 459.

berechnet. Bezeichnet k' die monomolekulare Konstante dieser Reaktion für Stunden und natürliche Logarithmen so ergibt sich für ursprünglich absoluten Alkohol im Mittel $k'=6.10^{-5}$, für $w_m=0.7$, bei $c={}^1/_3$ $k'=7.10^{-6}$, bei $c={}^2/_3$ $k'=24.10^{-6}$, für $w_m=1.4$, bei $c={}^2/_3$ $k'=8.4.10^{-6}$. Bei den übrigen Versuchen mit ursprünglich wasserhaltigem Alkohol kann die Chloräthylbildung vernachlässigt werden.

Außer bei den Versuchsreihen mit $w_0 = 0.009$, von denen hier nur die Mittelwerte veröffentlicht werden, wurde durchwegs Phenolphthalein als Indikator verwendet, ebenso wie dies U d b y getan hatte. Dagegen bei $w_0 = 0.009$ Rosolsäure, wie dies bei den 1907 ausgeführten Versuchsreihen geschehen war. Ein Einfluß des Indikators auf die erhaltenen Konstanten läßt sich nicht mit Sicherheit erkennen; in beiden Fällen sind diese, wenn Rosolsäure benützt wurde, meist etwas niedriger.

Bei den Versuchsreihen der Tabellen Nr. 81—86 wurde der in der Untersuchung über das spezifische Gewicht des absoluten Äthylalkohols bei $25^{0.22}$ benützte Alkohol verwendet, seine relative Dichte in luftfreiem Zustande und reduziert auf den luftleeren Raum betrug, wie dort angegeben, im Mittel $d^{\frac{250}{40}} = 0.78513$, die Kontrollversuche mit Benzoesäure sind gleichfalls dort angeführt. Die bei den hier mitgeteilten Kontrollversuchen mit Benzoesäure angeführten w_m ber. sind nach der Formel von H. Goldschmidt $w_m = \frac{0.15(k_0/c - k_m/c)}{k_m/c}$ ermittelt, wobei für k_0/c 0.0705 eingesetzt wurde.

Bei den Versuchsreihen der Tabellen 81-89 wurden je $4.963~cm^3$, bei Nr. 90-101 je $4.961~cm^3$ entnommen und titriert.

Bei Nr. 81-86 war die Barytlauge 0.08954, bei Nr. 87-89 0.08588 normal. Die k_b sind nach der später mitgeteilten Intrapolationsformel abgeleitet, für die nur die Versuchsreihen (Nr. 91-101) benutzt wurden, bei denen mit alkoholischer Natronlauge titriert worden war.

1. Versuche in ursprünglich wasserfreiem Äthylalkohol. $w_{\rm o}=0.$

α) Titration mit wässerigen Laugen.

	Tabelle 81.							
.1 :	= 5.46 $C = 33.6$	0.0 = 0.0	0984 c = 0.5967	7				
t	X—1.	$A - X_k$	105k:	$10^5 k_k$				
0.35	5:40							
21.6	$3 \cdot 45$	$3 \cdot 49$	922	898				
$29 \cdot 1$	3.01	3.07	888	858				
44.65	2.50	$2 \cdot 29$	884	845				
48.75	1.99	2.09	899	855				
$69 \cdot 35$	1.40	1.54	852	792				
$69 \cdot 95$	1.20	1.34	940	872				
$10^5 k_m = 893$ 10	$0^5 k_{km} = 839 \qquad \frac{10}{2}$	$\frac{4k_m}{c} = 150$	$\frac{10^4 k_{km}}{c_M} = 141$	$c_{M}=0.5958$				
	$0.030 10^5 k_b = 3$	792 f% =	+ 2.60 v = 0.	56				

[≃] Ber. D. ch. G. 44, 1911, S. 2881.

Tabelle 82.

$$A = 5 \cdot 46 \quad C = 33 \cdot 08 \quad a = 0 \cdot 0984 \quad c = 0 \cdot 5967$$

$$t \quad A - X \quad A - X_k \quad 10^5 k \quad 10^5 k_k$$

$$0 \cdot 35 \quad 5 \cdot 40 \quad - \quad - \quad - \quad -$$

$$21 \cdot 35 \quad 3 \cdot 47 \quad 3 \cdot 51 \quad 925 \quad 902$$

$$26 \cdot 2 \quad 3 \cdot 22 \quad 3 \cdot 27 \quad 874 \quad 849$$

$$29 \cdot 6 \quad 3 \cdot 00 \quad 3 \cdot 06 \quad 878 \quad 849$$

$$45 \cdot 1 \quad 2 \cdot 13 \quad 2 \cdot 22 \quad 906 \quad 866$$

$$51 \cdot 5 \quad 1 \cdot 97 \quad 2 \cdot 07 \quad 859 \quad 817$$

$$69 \cdot 65 \quad 1 \cdot 30 \quad 1 \cdot 44 \quad 895 \quad 831$$

$$10^5 k_m = 883 \quad 10^5 k_{km} = 846 \quad \frac{10^4 k_m}{c} = 148 \quad \frac{10^4 k_{km}}{c_M} = 142 \quad c_M = 0 \cdot 5960$$

$$w_m = 0 \cdot 028 \quad 10^5 k_b = 795 \quad f\% = + 6 \cdot 02 \quad c = 0 \cdot 60$$

Tabelle 83.

$$A = 5 \cdot 46 \quad C = 16 \cdot 54 \quad \alpha = 0 \cdot 0984 \quad c = 0 \cdot 2983$$

$$t \quad A - X \quad A - X_k \quad 10^5 k \quad 10^5 k_k$$

$$0 \cdot 4 \quad 5 \cdot 42 \quad - \quad - \quad -$$

$$24 \cdot 4 \quad 4 \cdot 39 \quad 4 \cdot 41 \quad 387 \quad 379$$

$$45 \cdot 4 \quad 3 \cdot 45 \quad 3 \cdot 49 \quad 438 \quad 427$$

$$69 \cdot 65 \quad 2 \cdot 77 \quad 2 \cdot 84 \quad 423 \quad 407$$

$$93 \cdot 6 \quad 2 \cdot 29 \quad 2 \cdot 38 \quad 403 \quad 385$$

$$118 \cdot 8 \quad 1 \cdot 80 \quad 1 \cdot 92 \quad 405 \quad 382$$

$$142 \cdot 8 \quad 1 \cdot 61 \quad 1 \cdot 75 \quad 371 \quad 346$$

$$10^5 k_m = 403 \quad 10^5 k_m = 384 \quad \frac{10^4 k_m}{c_M} = 135 \quad \frac{10^4 k_{km}}{c_M} = 129 \quad c_M = 0 \cdot 2974$$

$$w_m = 0 \cdot 028 \quad 10^5 k_b = 396 \cdot 8 \quad f_{\theta_\theta} = -3 \cdot 33 \quad v = 0 \cdot 33$$

Tabelle 84.

$$A = 5 \cdot 46 \quad C = 8 \cdot 27 \quad u = 0 \cdot 0985 \quad c = 0 \cdot 1491$$

$$t \quad A - X \quad A - X_k \quad 10^5 k \quad 10^5 k_k$$

$$0 \cdot 40 \quad 5 \cdot 49 \quad - \quad - \quad -$$

$$45 \cdot 55 \quad 4 \cdot 43 \quad 4 \cdot 45 \quad 199 \quad 195$$

$$90 \cdot 45 \quad 3 \cdot 60 \quad 3 \cdot 64 \quad 200 \quad 195$$

$$140 \cdot 2 \quad 2 \cdot 81 \quad 2 \cdot 88 \quad 206 \quad 198$$

$$187 \cdot 0 \quad 2 \cdot 34 \quad 2 \cdot 43 \quad 197 \quad 188$$

$$236 \cdot 2 \quad 1 \cdot 79^{\cdot 23} \quad 1 \cdot 91 \quad 205 \quad 193$$

$$10^5 k_m = 202 \quad 10^5 k_{km} = 193 \quad \frac{10^4 k_m}{c} = 135 \quad \frac{10^4 k_{km}}{c_M} = 130 \quad c_M = 0 \cdot 1484$$

$$w_m = 0 \cdot 026 \quad 10^3 k_B = 200 \cdot 5 \quad f\% = -3 \cdot 89 \quad v = 0 \cdot 39$$

Tabelle 85.

²³ Nach Zusatz von Alkohol bis zur Klärung A-X=1.89, $10^{5}k=195$.

$$(Zu \ Zabelle \ 85.)$$

$$t \qquad A-X \qquad A-X_k \qquad 10^5k \qquad 10^5k_k$$

$$140 \cdot 3 \qquad 2 \cdot 81 \qquad 2 \cdot 88 \qquad 206 \qquad 198$$

$$187 \cdot 2 \qquad 2 \cdot 37 \qquad 2 \cdot 46 \qquad 194 \qquad 185$$

$$236 \cdot 4 \qquad 1 \cdot 91^{-24} \qquad 2 \cdot 03 \qquad 193 \qquad 182$$

$$281 \cdot 4 \qquad 1 \cdot 51^{-25} \qquad 1 \cdot 65 \qquad 198 \qquad 185$$

$$10^5k_m = 197 \qquad 10^5k_{km} = 187 \qquad \frac{10^4k_m}{c} = 132 \qquad \frac{10^4k_{km}}{c_M} = 127 \qquad c_M = 0 \cdot 1483$$

$$w_m = 0 \cdot 027 \quad 10^5k_b = 199 \cdot 2 \quad f_{\phi} = -6 \cdot 53 \quad v = 0 \cdot 65$$

Tabelle 86.

$$A = 5 \cdot 46 \quad C = 4 \cdot 05 \quad a = 0 \cdot 0984 \quad c = 0 \cdot 0731$$

$$t \quad A - X_k \quad 10^6 k \quad 10^6 k_k$$

$$0 \cdot 60 \quad 5 \cdot 47 \quad - \quad - \quad -$$

$$42 \cdot 1 \quad 4 \cdot 99 \quad 5 \cdot 00 \quad 924 \quad 903$$

$$116 \cdot 2 \quad 4 \cdot 20 \quad 4 \cdot 23 \quad 979 \quad 953$$

$$187 \cdot 4 \quad 3 \cdot 66^{26} \quad 3 \cdot 71 \quad 926 \quad 894$$

$$281 \cdot 6 \quad 3 \cdot 07^{26} \quad 3 \cdot 14 \quad 888 \quad 853$$

$$338 \cdot 4 \quad 2 \cdot 72^{26} \quad 2 \cdot 80 \quad 894 \quad 856$$

$$402 \cdot 5 \quad 2 \cdot 42^{26} \quad 2 \cdot 52 \quad 878 \quad 834$$

$$10^6 k_m = 899 \quad 10^6 k_{km} = 862 \quad \frac{10^4 k_m}{c} = 123 \quad \frac{10^4 k_{km}}{c_M} = 119 \quad c_M = 0 \cdot 0724$$

$$w_m = 0 \cdot 026, \quad (10^6 k_b = 985), \quad (f_{\infty} = -14 \cdot 6), \quad (v = 1 \cdot 47)$$

Tabelle 87.

Kontrollversuch mit Benzoesäure mit dem bei den Versuchen der Tabellen 88 und 89 verwendeten Alkohol, der luftfrei $d\frac{250}{4^0}=0.78512_4$ zeigte.

 $10^4 k_m = 98$, $\frac{10^4 k_m}{c} = 592$, daraus $w_{m \ ber} = 0.029$, $w_m = 0.030$ für $w_0 = 0$.

Tabelle 88.

	A = 5.24 $C = 9.57$	a = 0.0906	c = 0.1656	
t	A - X	$1-X_k$	$10^{5}k$	$10^5 kk$
0.1	$5 \cdot 21$			_
$29 \cdot 2$	4.23	4.55	216	210
11.8	$4 \cdot 26$	$4 \cdot 28$	201	196
$69 \cdot 2$	$3 \cdot 59$	3.63	237	228
$93 \cdot 2$	$3 \cdot 29$	3.34	217	210
118.1	$2 \cdot 93$	3.00	214	205
141.4	2.48	2.56	230	220

²⁴ Nach Zusatz von Alkohol bis zur Klärung $A-X=1^{\circ}99,\ 10^{\circ}k=186.$ ²⁵ Nach Zusatz von Alkohol bis zur Klärung $A-X=1^{\circ}69,\ 10^{\circ}k=181.$ ²⁶ Nach Zusatz von Alkohol bis zur Klärung $A-X=3^{\circ}71,\ 3^{\circ}12,\ 2^{\circ}77,\ 2^{\circ}47,\ 10^{\circ}k=894,\ 862,\ 870,\ 855.$

(Zu Tabelle 88.)

$$10^{5}k_{m} = 221 10^{5}k_{km} = 213 \frac{10^{4}k_{m}}{c} = 134 \frac{10^{4}k_{km}}{cM} = 129 cM = 0.1647$$

$$w_{m} = 0.020 10^{5}k_{b} = 228.5 f\% = -7.28 v = 0.70$$

Tabelle 89.

$$A = 5 \cdot 23 \quad C = 38 \cdot 65 \quad a = 5 \cdot 23 \quad c = 0 \cdot 6688$$

$$t \quad A - X \quad A - X_k \quad 10^{5k} \quad 10^{5k_k}$$

$$0 \cdot 4 \quad 5 \cdot 20 \quad - \quad - \quad -$$

$$6 \cdot 8 \quad 4 \cdot 53 \quad 4 \cdot 54 \quad 918 \quad 903$$

$$20 \cdot 8 \quad 3 \cdot 24 \quad 3 \cdot 29 \quad 1000 \quad 968$$

$$29 \cdot 25 \quad 2 \cdot 65 \quad 2 \cdot 72 \quad 1010 \quad 970$$

$$44 \cdot 6 \quad 1 \cdot 91 \quad 2 \cdot 01 \quad 981 \quad 931$$

$$52 \cdot 4 \quad 1 \cdot 63 \quad 1 \cdot 75 \quad 967 \quad 908$$

$$10^{5}k_{m} = 985 \quad 10^{5}k_{km} = 939 \quad \frac{10^{4}k_{m}}{c} = 147 \quad \frac{10^{4}k_{km}}{cM} = 141 \quad c_{M} = 0 \cdot 6680$$

$$w_{m} = 0 \cdot 025 \quad 10^{5}k_{b} = 892 \quad f_{\theta_{\theta}} = +5 \cdot 00 \quad v = 0 \cdot 48$$

3. Titrationen mit 0.8106 n-alkoholischer Natronlauge.

Tabelle 90.

Kontrollversuch mit Benzoesäure mit dem bei den Versuchen der Tabellen 91—101 verwendeten Alkohol, der luftfrei d $\frac{25^\circ}{4^\circ}=0.78513_6$ zeigte.

$$A = 6 \cdot 13 \quad C = 9 \cdot 88 \quad a = 0 \cdot 1000 \quad c = 0 \cdot 1614$$

$$t \quad A - X \quad 10^4 k$$

$$0 \cdot 4 \quad 6 \cdot 12 \quad -$$

$$6 \cdot 65 \quad 5 \cdot 22 \quad 104$$

$$21 \cdot 4 \quad 3 \cdot 65 \quad 105$$

$$30 \cdot 95 \quad 3 \cdot 03 \quad 99$$

$$46 \cdot 1 \quad 2 \cdot 22 \quad 96$$

$$71 \cdot 3 \quad 1 \cdot 32 \quad 94$$

$$10^4 k_m = 98$$
 $\frac{10^4 k_m}{c} = 605$ daraus w_m ber. = 0.025, w_m gef. = 0.030 für $w_0 = 0$

Tabelle 91.

	A = 6.44 C = 9.87	a=0.105	c = 0.1612	
t	A - X	$A-X_k$	$10^{5}k$	$10^5 k_k$
$0 \cdot 2$	$6 \cdot 41$		· —	
43.6	$5 \cdot 06$	5.09	240	235
91.5	$3 \cdot 97$	4.03	230	223
139.6	$3 \cdot 05$	$3 \cdot 13$	233	225
164.1	$2 \cdot 78$	2.88	222	213
211.8	$2 \cdot 21$	$2 \cdot 34$	220	208
236.3	1.96	2.10	219	206
$10^5 k_m = 225$	$10^5 k_{km} = 215 \qquad \frac{10^4 k}{c}$	$\frac{m}{m} = 140$	$\frac{10^4 k_{km}}{c_M} = 134$	$c_{\text{M}} = 0.1605$
10m	$= 0.030 10^{5} k_{b} = 21$	2·5 f% =	+ 1.16 v = 0	14

Tabelle 92.

$$A = 6 \cdot 44 \quad C = 9 \cdot 87 \quad a = 0 \cdot 1052 \quad c = 0 \cdot 1612$$

$$t \quad A - X \quad A - X_k \quad 10^5 k \quad 10^5 k_k$$

$$0 \cdot 2 \quad 6 \cdot 44 \quad - \quad - \quad - \quad -$$

$$43 \cdot 6 \quad 5 \cdot 11 \quad 5 \cdot 14 \quad 231 \quad 225$$

$$91 \cdot 5 \quad 4 \cdot 00 \quad 4 \cdot 06 \quad 226 \quad 219$$

$$139 \cdot 7 \quad 3 \cdot 05 \quad 3 \cdot 13 \quad 232 \quad 223$$

$$164 \cdot 1 \quad 2 \cdot 76 \quad 2 \cdot 86 \quad 224 \quad 215$$

$$211 \cdot 6 \quad 2 \cdot 22 \quad 2 \cdot 35 \quad 219 \quad 207$$

$$236 \cdot 1 \quad 1 \cdot 91 \quad 2 \cdot 05 \quad 224 \quad 211$$

$$10^5 k_m = 225 \quad 10^5 k_{km} = 215 \quad \frac{10^4 k_m}{c} = 140 \quad \frac{10^4 k_m}{c_M} = 134 \quad c_M = 0 \cdot 1605$$

$$m_m = 0 \cdot 030 \quad 10^5 k_b = 212 \cdot 5 \quad f_{\%} = 1 \cdot 16 \quad r = 0 \cdot 14$$

$$Tabelle \ 93.$$

$$A = 6 \cdot 44 \quad C = 19 \cdot 97 \quad a = 0 \cdot 1052 \quad c = 0 \cdot 3262$$

Tabelle 94.

$$A = 6 \cdot 45 \quad C = 39 \cdot 95 \quad a = 0 \cdot 1053 \quad c = 0 \cdot 6527$$

$$t \quad A - X \quad A - X_h \quad 10^5 k \quad 10^5 k_k$$

$$0 \cdot 7 \quad 6 \cdot 37 \quad - \quad - \quad - \quad -$$

$$18 \cdot 8 \quad 4 \cdot 49 \quad 4 \cdot 53 \quad 836 \quad 815$$

$$27 \cdot 8 \quad 3 \cdot 79 \quad 3 \cdot 86 \quad 830 \quad 801$$

$$43 \cdot 25 \quad 2 \cdot 68 \quad 2 \cdot 78 \quad 881 \quad 845$$

$$50 \cdot 75 \quad 2 \cdot 26 \quad 2 \cdot 38 \quad 897 \quad 853$$

$$67 \cdot 8 \quad 1 \cdot 50 \quad 1 \cdot 66 \quad 934 \quad 869$$

$$68 \cdot 15 \quad 1 \cdot 57 \quad 1 \cdot 73 \quad 900 \quad 838$$

$$10^5 k_m = 882 \quad 10^5 k_m = 838 \quad \frac{10^4 k_m}{c} = 135 \quad \frac{10^4 k_m}{c_M} = 128 \cdot 5 \quad c_M = 0 \cdot 6518$$

$$w_m = 0 \cdot 030 \quad 10^5 k_b = 867 \quad f\% = -3 \cdot 46 \quad v = 0 \cdot 41$$

Tabelle 95. $A = 5.68 \quad C = 39.90 \quad a = 0.0927 \quad c = 0.6520$

t

90.75

2. Versuche in ursprünglich wasserhaltigem Äthylalkohol. Titrationen mit 0.8106 n-alkoholischer Natronlauge.

Tabelle 96.

$$A = 5 \cdot 70 \quad C = 9 \cdot 90 \quad a = 0 \cdot 0931 \quad c = 0 \cdot 1618$$

$$t \quad A - X \quad 10^6 k$$

$$0 \cdot 6 \quad 5 \cdot 70 \quad -$$

$$113 \cdot 6 \quad 5 \cdot 12 \quad 469$$

$$210 \cdot 1 \quad 4 \cdot 57 \quad 455$$

$$280 \cdot 8 \quad 4 \cdot 30 \quad 424$$

$$378 \cdot 9 \quad 3 \cdot 94 \quad 423$$

$$545 \cdot 2 \quad 3 \cdot 25 \quad 447$$

$$737 \cdot 2 \quad 2 \cdot 80 \quad 418$$

$$10^6 k_m = 434 \quad \frac{10^5 k_m}{c} = 268 \quad w_0 = 0 \cdot 684 \quad w_m = 0 \cdot 702$$

$$10^6 k_b = 434 \quad f \% = \pm 0 \quad v = 0$$

Tabelle 97. A = 5.68 C = 19.98 a = 0.0928 c = 0.3264

$$10^5 k_m = 118$$
 $10^5 k_{km} = 115$ $\frac{10^5 k_m}{c} = 361$ $\frac{10^5 k_{km}}{c_M} = 354$ $c_M = 0.3261$ $w_0 = 0.682$ $w_m = 0.705$ $10^5 k_b = 110$ $f_{\%}^{\#} = +4.55$ $v = 0.48$

Tabelle 98.

 $2 \cdot 49$

1.75

411

394

370

2.40

1.62

Tabelle 99.

C. Zusammenstellung der Versuchsergebnisse.

Werden die k_m/c der Versuchsreihen mit ungefähr gleichem Wassergehalte nach steigender Salzsäurekonzentrationen geordnet, so erhält man:

1. Versuche in Glyzerin.

a) Normale Buttersäure.

	$u_0 = 0$							
Tabelle Nr.	7	6	õ	4	Mittelw.			
c	0.04192	0.0849	0.1684	0.3207				
w_m	0.0335	0.026	0.031	0.027	0.029			
k_m/c	2.00	2.07	2.06	2.06	2.05			
		v_0 :	= 0.7					
Tabelle Nr.	11	10	9	8	Mittelw.			
c	0.0416	0.0827	0.1649	0.3313				
w_m	0.690	0.680	0.681	0.705	0.689			
k_m/c	1.05	1.09	$1 \cdot 09$	1.11	1.08			
		iv_0	= 1.3					
Tabelle Nr.	15	14	13	12	Mittelw.			
c	0.0410	0.0823	0.1655	0.3272				
w_m	$1 \cdot 334$	1.346	$1 \cdot 334$	1.337	1 · 338			
k_m/c	0.797	0.794	0.790	0.794	0.794			

b) Isobuttersäure.

		u)		cisadic			
			$w_0 =$	= 0			
Tabelle Nr.	20	21	19	18	17	16	Mittelw.
ϵ	0.0822	0.0843	0.1677	0.1659	0.3039	0.3361	
w _m	0.035	0.031	0.025	0.038	0.032	0.038	0.033
k_m/c	1.65	1.65	1.66	1.66	1.68	1.64	1.66
nmje	1 00	1 00			1 0.,	1 01	1 00
			$w_{o} =$	0.7			
Tabelle Nr.	25	2	4	23		22	Mittelw.
c	0.08335	0.1		0.1693	0.	2653	
w _m	0.693	0.6		0.724		711	0.706
k_m/c	0.827	0.8		0.825		832	0.829
n mi c	0 021	0 0			''	C-0-	0 020
			$w_0 =$			_	
Tabelle Nr.	29	2	7	28		26	Mittelw.
c	0.0850	0.1	621	0.1925		3165	
w_m	1.329	1.3	97	1.396	1.	343	$1 \cdot 366$
k_m/c	0.660	0.6	54	0.665	$0 \cdot$	669	0.665
		\ 1	т 1 '	£			
		c) 1		mtsäur	e.		
			$w_0 =$	= 0			
Tabelle Nr.	34	35	32	33	30	31	Mittelw.
c	0.0832	0.0836	0.1654	0.1667	0.3322	0.3329	
10 m	0.023	0.030	0.025	0.032	0.030	0.027	0.028
k_m/c	$2 \cdot 03$	$2 \cdot 00$	$2 \cdot 01$	2.03	2.05	$2 \cdot 05$	$2 \cdot 03$
			<i>:</i> "₀ =				
m 1 11 27		10			20	o	35144
Tabelle Nr.	41	40	39	38	36	37	Mittelw,
c	0.0821	0.0833	0.1628	0.1650	0.3294	0.3305	
w_m	0.625	0.724	0.710	0.696	0.688	0.680	0.687
k_m/c	1.04	1.01	$1 \cdot 03$	0.985	1.11	1.11	1.05
			$w_0 =$	1:3			
Tabelle Nr.	47	46	44	45	43	42	Mittelw
c	0.0814	0.0916	0.1590	0.1629		0.3263	
w_m	1.362	1.336	1.330	1.339	1.339	1.302	1.335
k_m/c	0.797	0.786	0.811	0.793	0.797	0.818	0.800
nm/c	0 101	() 100	0 011	0 .00	0	0 010	0 0015
		d) 2, 4-I	initrol	enzoes	äure.		
			$w_0 =$				
m-1-11. 3*	eo.	6.5	•		ee	67	Mittalan
Tabelle Nr.	63	62	64	65	66	67	Mittelw.
c_{M}	0.1753	0.1783	0.3291		0.5543	0.5921	
w_m	0.010	0.014	0.009	0.011	0.009	0.007	0.010
$10^5 k_{km}/c_M$	119	117	118	117	117	118	118
			$w_0 =$	0.7			
Tabelle Nr.	68	€	9	70	7	1	Mittelw.
c	0.2210	0.	3302	0.3333	0.	6702	
w_m	0.668		684	0.674		677	0.676
$10^6 k_{km}/c_M$	552	521		546	556		544
= - · · · · · · · · · · · · · · · · · ·			$w_0 =$				-
(n 1 11 27		_			_	_	3724
Tabelle Nr.	72		3	74		5	Mittelw.
c	0.1758		33	0.3640		5928	
w_m	1.324		319	1.321		328	1.323
$10^{6}k_{m{km}}/c_{m{M}}$	282	279		277	275		278

e) 3,5-Dinitrobenzoesäure.

		$w_0 = 0$		
Tabelle Nr.	76	77	78	Mittelw.
см	0.1756	0.3447	0.5842	
w_m	0.005	0.002	0.004	0.002
$10^4 k_{km}/c_M$	209	216	207	211

2. Versuche in Glykol.

Hydrozintsäura

		E	yurozii	ntsaure.			
			$w_0 =$	= 0			
Tabelle Nr.	52	53	51	50	49	48	Mittelw.
c	0.0844	0.0826	0.1623	0.1701	0.3393	0.3376	
w_m	0.040	0.035	0.033	0.038	0.029	0.028	0.033
k_m/c	4 49	4.55	4.58	$4 \cdot 64$	4.59	$4 \cdot 65$	4.58
			$w_0 =$	0.7			
Tabelle Nr.	5	7	56	55	5-	1	Mittelw.
c	0.08	307	0.1625	0.1628	0.30	089	
w_m	0.69	95	0.691	0.698	0.70)2	0.696
$k_{m/c}$	2.1	1	2.16	$2 \cdot 18$	2 · 2	5	2.18
			$w_{\rm o} =$	1.3			
Tabelle Nr.	61	L	60	59	58	;	Mittelw.
c	0	0812	0.1610	0.1610	0.3	3283	_
1C m	1.	341	1.351	1.345	1.	315	1.338
k_m/c	1.4	13	1.45	$1\cdot 45$	1.	19	$1 \cdot 45$

3. Versuche in Äthylalkohol.

3, 5-Dinitrobenzoesaure.

a) Titrationen mit wässeriger Lauge.

			$w_0 =$	0				
,	Tabelle Nr.	86	85		84	88		
	см	0.0724	0.1	483	0.1484	0.164	7	
	w_{m}	0.026	0.0	27	0.026	0.050		
	$10^4 k_{km}/c_M$	119	127	1	30	129		
ŗ	Tabelle Nr.	83	81		82	89		
(с м	0.2974	0.5	958	0.5960	0.6686	0	
4	v_m	0.028	0.0	30	0.028	0.025		
:	$10^4 k_{km}/c_M$	129	141	1	42	141		
$w_0 = 0.005^{27}$								
$c_{\mathcal{M}}$	0.0840	0.1716	0.1717	0.1717	0.3446	0.6893	0.6893	
w_m	0.028	0.033	0.032	0.039	0.032	0.033	0.033	
$10^4 k_{km}/c_M$	118	119	126	134	133	154	159	

²⁷ Die Versuchsreihen werden hier nicht mitgeteilt.

$w_0 = 0.009^{28}$								
(Mit Rosolsäure titriert.)								
	c_M	0.16	6 51 0	3307	0.6683			
	w_m	0.03	33 0	•040	0.036			
	10 4 k_{km}/c_{M}	110	116	1	31			
		u	$r_0 = 0.022^{\frac{1}{2}}$	3				
с м	0.1722	0.1744	0.3456	0.3496	0.6932	0.6997		
io_m	0.050		0.051	0.041	0.050	0.044		
$10^4 k_{km}/c_M$		13	127	136	139	145		
	β) Titrat:	ionen m	it alkoh	olischer	Lauge.			
	• •		$w_0 = 0$					
Tabelle Nr.	91	92	93	95	96	Mittelw.		
$e_{\mathbf{M}}$	0.1605	0.1605	0.3253	0.6508	0.6518			
10 m	0.030	0.030	0.028	0.059	0.030	0.059		
$10^4 k_{km}/c_M$	134 1	34	136	133	128.5	133		
		$w_0 =$	= 0·681—0·	684				
	Tabelle Nr.	96	;)7	98			
	c_M	0.1618	329 ()	3261	0.6512			
	$w_m = 0.702$			705	0.706			
	$10^4 k_{Em}/c_M$ 268 30		354		588			
$w_0 = 1.374 - 1.378$								
	Tabelle Nr. 99		1	100				
	c 0.1613		3 0	3263	0.6500 31			
	w_m	1.394	1	399	$1 \cdot 395$			
	10 5 k_m/c	127	166		265^{32}			

Die hier untersuchten Säuren zeigen nicht nur in ursprünglich absolutem Glyzerin, sondern auch in solchem, das schon zu Versuchsbeginn 1'3 Mole Wasser im Liter enthielt, Proportionalität zwischen den Geschwindigkeitskonstanten und den Salzsäurekonzentrationen.

Das gleiche gilt auch noch für die Veresterung der Hydrozimtsäure in Äthylenglykol zwischen $^{1}/_{12}$ und $^{1}/_{3}$ normaler Chlorwasserstoffkonzentration, während im gleichen Medium und im gleichen Konzentrationsgebiet Kurt Melkus³³ bei der normalen Buttersäure und Adolfine Schachner³⁴ bei der Isobuttersäure, der normalen und der Isovaleriansäure und der Kapronsäure eine ganz schwache, nicht die Grenzen der Meßgenauigkeit übersteigende Zunahme der k_m/c mit wachsender Salzsäurekonzentration bei $w_m = 0.7$ und 13 beobachtet haben.

In wasserreicherem Äthylalkohol nimmt übereinstimmend mit dem seinerzeitigen Befunde und dem bei allen anderen bisher untersuchten Säuren die Veresterungsgeschwindigkeit der

²⁸ Die Versuchsreihen werden hier nicht mitgeteilt. ²⁹ c. ³⁰ $10^5k_{km}/c$. ³¹ c_{M} . ²² $10^5k_{km}/c_{M}$. ³³ Monatsh. Chem. 48, 1927, S. 9, bzw. Sitzb. Ak. Wiss. Wien (II b) 136, 1927, S. 9. ³⁴ Monatsh. Chem. 52, 1929, S. 23, bzw. Sitzb. Ak. Wiss. Wien (II b) 138, 1929, S. 191.

3,5-Dinitrobenzoesäure weit rascher zu als die Chlorwasserstoffkonzentration. Dies zeigt sich auch, natürlich in weit schwächerem Maße, bei allen Versuchen mit sehr wasserarmem Alkohol, bei denen ebenso wie bei den Versuchen aus dem Jahre 1907 und bei den von Udby ausgeführten mit wässerigen Laugen titriert wurde.

Dagegen sind in den Versuchsreihen mit sehr wasserarmem Alkohol, bei denen mit alkoholischer Lauge titriert wurde (Nr. 91-96), die Geschwindigkeitskonstanten der Chlorwasserstoffkonzentration proportional. Der Grund hiefür dürfte folgender sein: Beim Zusließen der wässerigen Lauge zum Reaktionsgemisch scheidet sich bei größerem Umsatz Ester aus, wie an dem Auftreten einer Emulsion bei Titration von solchen Proben zu erkennen ist. Der Ester schließt Chlorwasserstoff ein und bewirkt daher einen Minderverbrauch an Lauge und damit zu hohe k-Werte. Dies erkennt man aus den letzten Bestimmungen der Versuchsreihen der Tabellen 84-86, wo nach Zusatz von neutralem Alkohol bis zur klaren Lösung noch Barytlauge verbraucht wurde. Anderseits wird bei der Titration auch etwas Ester verseift, allerdings, wie schon seinerzeit 35 gezeigt werden konnte, nur in geringem Maße. Dies hat natürlich die entgegengesetzte Wirkung auf die Konstanten. Der letztere Fehler ist von der Konzentration der Salzsäure ziemlich unabhängig, denn da die Hauptmenge der Lauge stets rasch zugesetzt wurde, erforderte die Neutralisation bei 1/6 n-Chlorwasserstoff kaum mehr Zeit als bei ²/₃ n. Dagegen wächst natürlich der erstere Fehler ungefähr proportional der Chlorwasserstoffkonzentration. Wenn nun bei $c={}^2/_3$ der erstere, bei $c={}^1/_6$ der letztere Fehler überwiegt und bei $c={}^1/_3$ sich beide Fehler ungefähr kompensieren, so ist es begreiflich, daß die Konstanten bei $c = \frac{1}{6}$ und das Gesamtmittel der k_m/c bei allen drei Konzentrationen mit den bei der Titration mit alkoholischer Lauge gefundenen Werten annähernd ühereinstimmen. Denn bei letzteren fällt der Einschlußfehler gänzlich weg und der Verseifungsfehler tritt stark zurück, da wegen des Ausbleibens einer Emulsion durch den sich ausscheidenden Ester die Titrationen viel weniger lang dauern als wenn man mit wässerigen Laugen arbeitet und auch das Medium ein anderes ist.

Es kommen somit die Konstanten jener Versuchsreihen, bei denen mit alkoholischer Lauge titriert wurde, den richtigen am nächsten, daher wurden nur sie zur Ableitung der Intrapolationsformel benutzt.

Die nach letzterer berechneten Werte zeigen noch eine leidliche Übereinstimmung mit den im Jahre 1907 ausgeführten Versuchsreihen: nur in 4 Fällen sind die v größer als 1, davon nur in einem etwas größer als 2 (2·14).

³⁵ Sitzb. Ak. Wiss. Wien (II b) 116, 1907, S. 484.

D. Abhängigkeit der Geschwindigkeitskonstanten von den Konzentrationen des Wassers und der Salzsäure.

Die für die Gleichung für monomolekulare Reaktionen, Stunden, Brigg'sche Logarithmen und 25° geltenden Geschwindigkeitskoeffizienten lassen sich durch nachstehende Formeln als Funktionen der Wasser- (w) — und der Salzsäurekonzentrationen darstellen:

Für die 3,5-Dinitrobenzoesäure in Äthylalkohol für w = 0.01-1.4 und c = 0.16-0.7:

$$\begin{split} \frac{1}{k} &= 19 \cdot 1 + \frac{60 \cdot 80}{c} + \frac{0 \cdot 1216}{c^2} + \left(-687 \cdot 5 + \frac{512 \cdot 8}{c} - \frac{6 \cdot 694}{c^2} \right) w + \\ &\quad + \left(203 \cdot 3 - \frac{47 \cdot 42}{c} + \frac{20 \cdot 59}{c^2} \right) w^2. \end{split}$$

In Glyzerin für w = 0.01-1.3 und c = 0.3, voraussichtlich aber auch für c = 0.16-0.7:

$$k = \frac{c}{47 \cdot 29 + 20 \cdot 04 \, w + 69 \cdot 52 \, w^2}.$$

Die Koeffizienten der übrigen hier untersuchten Säuren lassen sich für w = 0.01-1.3 durch Gleichungen von der Form

$$k = \frac{c}{\alpha + \beta w + \gamma w^3/2}$$

darstellen.

Die Werte für α , β , γ und die Grenzen für c gibt nachstehende Zusammenstellung.

Säure	Medium	. α.	ß	Υ	c
n-Butter-	Glyzerin	0.4638	0.8648	-0.2335	0.04 bis 0.33
Isobutter-	Glyzerin	0.5570	1.485	-0.6733	0.08 bis 0.33
Hydrozimt-	Glykol	0.2064	0.3661	 0·00442	0.08 bis 0.33
2,4-Dinitrobenzoe-	Glyzerin	$846 \cdot 1$	-59.39	1858	0.18 bis 0.67

Die Koeffizienten für die Hydrozimtsäure in Glyzerin lassen sich durch die gleiche Formel wie die der normalen Buttersäure darstellen.

Wie die k_b zeigen, werden die gefundenen Konstanten durch obige Formeln gut wiedergegeben.

E. Vergleich der Veresterungsgeschwindigkeiten in Äthylalkohol, Glykol und Glyzerin.

Nachstehend sind für die *n*-Buttersäure, die Hydrozimtsäure, die 2, 4- und die 3, 5-Dinitrobenzoesäuren die monomolekularen Veresterungsgeschwindigkeitskonstanten für Brigg'sche Logarithmen, Stunden und 25° in Äthylalkohol, Glykol und Glyzerin für einige Chlorwasserstoff- und Wasserkonzentrationen berechnet.

Die Indizes a, g und γ beziehen sich auf Alkohol, Glyzerin und Glykol.

In der Prozentkolonne sind die Konstanten in Prozenten der für die gleiche Chlorwasserstoffkonzentration bei einem mittleren Wassergehalt von 0.030 Molen pro Liter errechneten angegeben.

In den Rubriken v_a und v_g sind die Konstanten der betreffenden Säuren in Vielfachen der Konstanten der Benzoesäure für gleiche Salzsäure- und Wasserkonzentration angeführt. Zur Berechnung der v_g wurden aus noch nicht veröffentlichten Versuchen, die Frau Paula Ulicny auf Veranlassung des einen von uns über die Veresterungsgeschwindigkeit der Benzoesäure mit glyzerinischer Salzsäure angestellt hat, die zwischen den Grenzen c = 0.14-0.7 und w = 0.01-1.8 geltende Formel

$$\frac{1}{k} = \frac{23 \cdot 43}{c} + \left(\frac{56 \cdot 66}{c} - 38 \cdot 13\right) w$$

abgeleitet. Sie zeigt, daß bei der Benzoesäure in wasserreicherem Glyzerin die Veresterungsgeschwindigkeit rascher als die Salzsäurekonzentration zunimmt.

	$w_m = c$	$\underbrace{\frac{\text{Alkol}}{k.10^3}}$	o _o	$\overbrace{k.10^3}^{\text{Glyk}}$	00136	$\underbrace{\frac{\text{Glyze}}{k.10^3}}_{\text{Glyze}}$	erin oo	$rac{k_a}{k_\gamma}$	$rac{k_{\gamma}}{k_{y}}$
n-Buttersäure	$\begin{cases} 0.030^{-1}/_{6} \\ 0.065^{-1}/_{6} \\ 0.733 {1/_{6} \\ 1/_{3} \\ 1.346 {1/_{6} \\ 1/_{3} \end{cases}}$	1050 879 205 — (120) ³⁷	100 83·7 19·5 — (11·4) 37	770 725 396 825 280 589	100 94·2 51·5 54·2 36·3 38·7	341 316 175) 350} 132) 264}	100 92·7 51·3 38·7	1·36 1·21 0·518 — 0·429	2·26 2·30 2·26 — 2·12 2·27
Hydrozimt- säure	$\begin{cases} 0.030 & \frac{1}{6} \\ 0.065 & \frac{1}{6} \\ 0.733 & \frac{1}{6} \\ 1/3 & \frac{1}{6} \end{cases}$	1215 1047 261 672 118 307	100 86·2 21·5 — 9·7	766 724 353 707 241 482	100 94·5 46·1 — 31·5 —	341 316 175 350 132 264	100 92·7 51·3 — 38·7	1·59 1·45 0·739 0·951 0·490 0·637	2·25 2·29 2·02 2·02 1·82 1·83
	$w_m = c$	Alkohol 103k	%	$\frac{\text{Glyz}}{10^3 k}$	erin %	v_a		v_g	$\frac{k_a}{k_g}$
2, 4-Dinitro- benzoesüure	$\begin{cases} 0.030 & \frac{1}{6} \\ 0.065 & \frac{1}{6} \\ 0.733 \begin{cases} \frac{1}{6} \\ \frac{1}{3} \\ \frac{2}{3} \\ 1.346 \end{cases} \\ \end{cases}$	 0·167	0 0 0 0 0	·195 ·191 ·0847 ·169 ·339 ·0455 ·0910 ·182	100 98·8 43·4		9 0.0 0.0 0.0 0.0)292)306)306)283)236)249)225)179	0.873

³⁶ Die Werte für n-Buttersäure in Glykol sind die von Adolfine Schachner ermittelten. Sie gelten bis zur Kaprylsäure (einschließlich). Monatsh. Chem. 52, 1929. S. 23, bzw. Sitzb. Ak. Wiss. Wien (II b) 138, 1929, S. 191. ³⁷ Wie bereits Rec. trav. Chim. 43, S. 518, Aum. 8, erwähnt, sind diese Werte sehr unsicher, da sie stark extrapoliert sind.

		Alkohol		Glyzerin				k_{a}
	w_m c	10^3k	0'0	$\widetilde{10^3k}$	00	v _a	v_g	$\overline{k_g}$
3, 5-Dinitro- benzoesture	(0.030 1/6	2.20	100	3.48	100	0.207	0.521	0.631
	0.065 1/6	1.88	$85 \cdot 8$	$3 \cdot 41$	$98 \cdot 1$	0.214	0.546	0.553
	1 (1/6	0.431	19.7	[1.68]38]		0.300	$[0.608]_{38}$	0.257
]0·733{1/ ₃	1.09	$24 \cdot 8$	3.36	48.3	0.271	0.560	0.326
) [2/3	$3 \cdot 92$	$44 \cdot 2$	[6 · 72]38 J		0.347	$[0.467]^{38}$	0.584
	{1/6	0.224	10.2	$[0.833]_{38}$		0.354	$[0.455]_{38}$	0.268
	1.346 1/3	0.583	$13 \cdot 2$	1.67	$24 \cdot 0$	0.335	0.413	0.350
	$\left(\frac{2}{3} \right)$	1.91	$21 \cdot 6$	$[3 \cdot 33]^{38}$		0.355	$ 0.327 ^{38}$	0.574

Wie schon erwähnt, lassen sich für die Veresterung mit glyzerinischer Salzsäure die Konstanten der Hydrozimtsäure durch die gleiche Formel darstellen wie die der normalen Buttersäure. Aus der Zusammenstellung erkennt man nun, daß auch die Veresterungskonstanten bei Verwendung von äthylenglykolischer Salzsäure wenigstens bei geringem Wassergehalte für beide Säuren praktisch gleich sind. Dagegen ist die verzögernde Wirkung des Wassers bei der Hydrozimtsäure größer als bei der normalen Buttersäure und den höheren normalen Fettsäuren bis einschließlich zur Kaprylsäure. Daß sich der Einfluß der Phenylgruppe in diesem Sinne auswirkt, ist wohl verständlich, da der verzögernde Einfluß der Wassers in allen untersuchten Medien bei Benützung von Salzsäure als Katalysator bei den untersuchten aromatischen Säuren immer stärker als bei den aliphatischen hervortritt.

Während die normale Buttersäure und die Isobuttersäure und die Hydrozimtsäure ebenso wie die meisten anderen bisher untersuchten Säuren bei sehr geringem Wassergehalt mit äthylalkoholischer Salzsäure entschieden rascher verestert werden als mit äthylenglykolischer oder gar mit glyzerinischer und erst bei größeren Wasserkonzentrationen langsamer, werden die 3, 5-und die 2, 4-Dinitrobenzoesäuren schon bei 0.03 Molen Wasser pro Liter mit glyzerinischer Salzsäure rascher verestert als mit äthylalkoholischer, ähnlich wie dies kürzlich z. B. für die Brombenzoesäuren 39 gefunden worden ist.

Die Konstanten der Isobuttersäure betragen in Glyzerin rund 82% von denen der normalen Buttersäure, in Äthylenglykol dagegen nur 70% in Äthylalkohol sogar nur 55% in Dies bestätigt die schon von Goldschmidt und Thuesen 2 gemachte Beobachtung, daß bei der Veresterung mit Chlorwasserstoff als Katalysator die Geschwindigkeitskonstanten der einzelnen Säuren bei verschiedenen Alkoholen in einem verschiedenen Verhältnis zueinander stehen können.

Im Gegensatze zum Verhalten in Glyzerin und Glykol ver-

³⁸ Die Zahlen sind eingeklammert, weil die Formel für die Veresterungsgeschwindigkeit der 3,5-Dinitrobenzoesäure in Glyzerin für diese Chlorwasserstoffkonzentrationen extrapoliert ist. 39 Monatsh. Chem. 52, 1929, S. 260, bzw. Sitzb. Ak. Wien (II b) 138, 1929, S. 395. 40 A. Kailan und A. Schachner, Monatsh. Chem. 52, 1929, S. 23, bzw. Sitzb. Ak. Wiss. Wien (II b) 138, 1929, S. 191. 41 H. Goldschmidt, Z. Elektroch. 17, 1911, S. 634, nach Messungen von J. Andersen. 42 Z. physikal. Chem. 81, 1913, S. 30.

estert die Hydrozimtsäure in Äthylalkohol um etwa 20% rascher als die normale Buttersäure. Dies war zu erwarten, da auch die Phenylessigsäure⁴³ in diesem Medium um rund 20% höhere Geschwindigkeitskonstanten hat als die letztere Säure.

Im Glyzerin beträgt für c=1/6, w=0.065 für die 2,4-bzw. 3,5-Dinitrobenzoesäure $v_{g\,2,4}=0.0306$, bzw. $v_{g\,3,5}=0.546$, für die o-, m- und p-Nitrobenzoesäure war $v_{go}=0.0612$, $v_{gm}=0.567$ und $v_{gp}=0.719^{43}$. Es ist also v_{go} . $v_{gp}=0.0441$, $(v_{gm})^2=0.321$ und daher bei der 2,4-Dinitrobenzoesäure die Veresterungsgeschwindigkeit kleiner als die aus dem Faktorenprodukte berechnete, bei der 3,5-Dinitrobenzoesäure dagegen viel größer.

Während bei der Veresterung mit alkoholischer Salzsäure, wie seinerzeit¹⁴ gezeigt werden konnte, sowohl bei der 2,4- als auch bei der 3,5-Dinitrobenzoesäure die zweite Nitrogruppe stärker verzögernd wirkt als die erste, trifft dies somit bei der Veresterung mit glyzerinischer Salzsäure nur bei der 2,4-Dinitrobenzoesäure zu, bei der 3,5-Dinitrobenzoesäure wirkt dagegen die zweite Nitrogruppe bedeutend schwächer verzögernd als die erste.

F. Zusammenfassung.

Es werden die Veresterungsgeschwindigkeiten der n- und der i-Buttersäure, der Hydrozimtsäure und der 2,4- und 8,5-Dinitrobenzoesäuren in glyzerinischer, der Hydrozimtsäure auch in glykolischer und der 3,5-Dinitrobenzoesäure auch in äthylalkoholischer Salzsäure bei 25° gemessen und ihre nach der Gleichung für monomolekulare Reaktionen berechneten Geschwindigkeitskonstanten innerhalb der Grenzen der Meßgenauigkeit in Glyzerin und Glykol im ganzen untersuchten Gebiete, in Athylalkohol aber nur bei sehr kleinen Wasserkonzentrationen proportional der Salzsäurekonzentration gefunden. Sie werden durch Intrapolationsformeln als Funktionen der letzteren und des Wassergehaltes dargestellt.

Die Konstanten der *n*-Buttersäure sind innerhalb der Versuchssehlergrenzen in wasserarmem und wasserreicherem Glyzerin und in wasserarmem Glykol gleich denen der Hydrozimtsäure. In Äthylalkohol verestert die Hydrozimtsäure rascher, in wasserreicherem Glykol langsamer als die *n*-Buttersäure.

Unter den Versuchsbedingungen findet so weitgehende Veresterung statt, daß die Wiederverseifung vernachlässigt werden kann.

Ein Versuch mit normaler Valeriansäure bestätigt die Vermutung, daß auch den übrigen gesättigten normalen Fettsäuren die nämlichen Konstanten zukommen dürften wie dieser Säure und der normalen Buttersäure.

⁴⁵ Monatsh. Chem. 48, 1927, S. 518, bzw. Sitzb. Ak. Wiss. Wien (II b) 136, 1927, S. 518: die v_g sind mit der hier für die Veresterungsgeschwindigkeit der Beuzoesäure in Glyzerin mitgeteilten Formel umgerechnet. 44 Sitzb. Ak. Wiss. Wien (IIb) 116, 1907, S. 486.